Pasar al contenido principal

Variaciones del cono límite de Benoist para representaciones infinitesimales

Fecha de inicio
Fecha de fin

Seminario de Sistemas Dinámicos

Título: Variaciones del cono límite de Benoist para representaciones infinitesimales

Expositor: Andrés Sambarino (CNRS)

Resumen: En los años 90 Benoist introduce la noción de cono límite de un subgrupo discreto de matrices. Recordemos que toda matriz (invertible) tiene una descomposición de Jordan en una parte "elíptica" (diagonalizable sobre C con vp de módulo 1), una parte triangular superior ("parabólica"), y una parte diagonalizable sobre R ("hiperbólica" o "loxodrómica"). El cono límite de Benoist es un objeto que contiene, para nuestro grupo discreto \Gamma, todas las partes hiperbólicas de los elementos de \Gamma.

En la charla intentaremos explicar porqué este concepto juega un papel tan central en el estudio de los subgrupos discretos de grupos de Lie, así como generalizaciones de este a las variaciones de representaciones.


Viernes 3/11 a las 14:30
Salón de seminarios del IMERL

Contacto: Santiago Martinchich - smartinchich [at] cmat.edu.uy (smartinchich[at]cmat[dot]edu[dot]uy)


El seminario será transmitido por el siguiente link si alguien manifiesta interés de que así ocurra hasta el día antes del seminario: https://salavirtual-udelar.zoom.us/j/83020032334?pwd=djAxdmg2K3NDVEU0V3…