Resumen: In this talk, we give a complete topological classification
of non-invertible Anosov maps on torus. We show that two
non-invertible Anosov maps on torus are topologically conjugate if and
only if their corresponding periodic points have the same Lyapunov
exponents on the stable bundles. As a corollary, if two non-invertible
Anosov maps on torus are topologically conjugate, then the conjugacy
is smooth along the stable foliation. We also give a smooth
classification via Jacobian on corresponding periodic points.
This is a joint work with Ruihao Gu.
(El seminario se transmite por el siguiente link si alguien manifiesta
interés hasta el día antes del seminario:
https://salavirtual-udelar.zoo
Topological and smooth classification of Anosov maps on torus.
Fecha de inicio
Fecha de fin