Pasar al contenido principal

Enhancing {OLAP} Analysis with Web Cubes

Tipo
Capítulo de libro
Año
2012
Publisher
Springer Berlin Heidelberg
ISBN
978-3-642-30283-1, 978-3-642-30284-8
Páginas
469
Número
7295
Tertiary title
Lecture Notes in Computer Science
Abstract

Traditional {OLAP} tools have proven to be successful in analyzing large sets of enterprise data. For today’s business dynamics, sometimes these highly curated data is not enough. External data (particularly web data), may be useful to enhance local analysis. In this paper we discuss the extraction of multidimensional data from web sources, and their representation in {RDFS.} We introduce Open Cubes, an {RDFS} vocabulary for the specification and publication of multidimensional cubes on the Semantic Web, and show how classical {OLAP} operations can be implemented over Open Cubes using {SPARQL} 1.1, without the need of mapping the multidimensional information to the local database (the usual approach to multidimensional analysis of Semantic Web data). We show that our approach is plausible for the data sizes that can usually be retrieved to enhance local data repositories.

Autores

Valentina Presutti
Elena Simperl
Lorena Etcheverry
Oscar Corcho
Alejandro Vaisman
Philipp Cimiano
Axel Polleres
Citekey
etcheverry_enhancing_2012
Keywords
Artificial Intelligence (incl. Robotics)
Computer Communication Networks
Database Management
Information Systems and Communication Service
Information Systems Applications (incl. Internet)
User Interfaces and Human Computer Interaction