Resumen: En esta oportunidad hablaré sobre un trabajo conjunto con Janina Letz, Amrei Oswald y Andrea Solotar.
La cohomología de Hochschild de un álgebra asociativa sobre un cuerpo k tiene estructura de k-álgebra conmutativa graduada con el producto cup. Se probó que dicha estructura es cero en grados positivos para las álgebras string cuadráticas triangulares [Bustamante 2006] y las string triangulares [Redondo-Roman 2014] entre otras. En este trabajo generalizamos dichos resultados probando que las álgebras monomiales triangulares tienen siempre producto cup cero en grados positivos. Para esto describimos el mapa diagonal asociado a la resolución de Bardzell dando una forma de calcular el producto cup para cualquier álgebra monomial.
------------------------------
Viernes 12/4 a las 11:15
Salón de Seminarios del IMERL y a través de Zoom
Contacto: Dalia Artenstein darten [at] fing.edu.uy (darten[at]fing[dot]edu[dot]uy) Rafael Parra rparra [at] fing.edu.uy (rparra[at]fing[dot]edu[dot]uy)
Información de acceso a Zoom / Zoom access info:
Enlace / link: https://salavirtual-
ID de reunión / Meeting ID: 850 0131 1823