
Towards a Framework
to Compare Formal Experiments
that Evaluate Testing Techniques

Diego Vallespir1, Silvana Moreno1,
Carmen Bogado1, and Juliana Herbert2

1 Instituto de Computación, Facultad de Ingenieŕıa
Universidad de la República, Montevideo, Uruguay.

2 Herbert Consulting
Porto Alegre, RS, Brazil.

dvallesp@fing.edu.uy , {silvanamoren, cmbogado}@gmail.com,
juliana@herbertconsulting.com

Abstract. There are many formal experiments to evaluate the perfor-
mance of different software testing techniques. The first we know about
is from 1978 [1].The most recent one is currently under execution and
some initial results have already been obtained [2]. Having a compari-
son framework of experiments is necessary in order to be able to formally
compare them and make progress on the construction of new experiments
based on previous ones. This paper presents a comparison framework and
four known formal experiments are compared.

1 Introduction

It is normal to use a hammer to hammer a nail into a wall. There are many
types of hammers but it is easy to choose one and even more, a lot of hammers
do the same job. It is normal to use a software testing technique to verify a
software unit. Unfortunately, it is not known which one to choose nor if different
techniques perform the same way for the same task.

The performance of each technique (cost, effectiveness and efficiency) has to
be known at the time of choosing a testing technique. But to obtain this kind of
knowledge is not easy given the variability of their performance, which depends
on the subject that applies it, the programming language and the application
type that is being tested (information system, robotics, etc). Some advances have
been made but there is still a long way to go.

There are many formal experiments to study the performance of different
software testing techniques. The first we know about is from 1978 [1]. The most
recent one is currently under execution and some initial results have already
been obtained [2].

Many years of empiric investigation in the subject have gone by though there
are not definite results yet. In A look at 25 years of data, the authors have reached
the same conclusion after studying various experiments on software testing [3].



Also, they found that it is really difficult to compare different experiments,
however, they do not present any solution to it.

Having a comparison framework of experiments is necessary in order to be
able to formally compare them and make progress on the construction of new ex-
periments based on previous ones. This paper presents a comparison framework
and takes four known formal experiments as example: [4], [5], [6], [7].

2 Comparison Framework

In this section we present what we consider the most relevant characteristics to
make a comparison of formal experiments to evaluate testing techniques. First
of all, it is interesting to compare the goals to know in which aspects and up to
which level the experiments can be compared. In second place, it is possible to
identify the chosen factors for the experiment and the alternatives for each one.
These are also compared together with the identification of the set of parameters
in each experiment.

As subjects are a basic component in Software Engineering experiments, it
is interesting to compare their main characteristics such us experience, abilities
and motivation.

Given the experiments to be compared refer to the application of testing
techniques, it is relevant to compare particular aspects of this kind of experi-
ments, for example: the defect classification used, the size, and language of each
program together with their number of defects. Making a comparison focused
on the chosen design for each experiment is of main importance. This includes
the time the experiment takes, the distribution of the subjects, the guidelines
followed for the assignment of the set of techniques and programs, the division
of the experiments into sessions, the number of unitary experiments in which
each subject participates, etc. A comparison of the way in which each design is
applied, thus, the process followed in each experiment, is also made. The res-
ponse variables chosen by the authors of the different experiments are identified.
Finally, the similarities and differences between the conclusions are studied.

3 Articles Comparison.

In this section we make a comparative analysis using the framework presented
in the previous section along with some known experiments conducted by, Basili
and Selby (B-S) [4], Kamsties and Lott (K-L) [5], Macdonald and Miller (M-M)
[6], and Juristo and Vega (J-V) [7].

Every experiment have a goal in common, which is to evaluate both the
efficiency and effectiveness of verification techniques meant for defect detection.
In order to conduct that evaluation the subjects must execute a series of testing
techniques on programs or fractions of code.

B-S carried out an experiment in 1987, later, in 1995 K-L carried out another
basing on the preceding from B-S. However, it is far from being a replication as



they differ on the language used as well as on the verification process as they
incorporated defect detection once the failures were found. In 1997 M-M carried
out a new experiment, though it varies from B-S’s and K-L’s ones. Finally, in
2001, J-V conducted a first experiment basing on B-S’s and K-L’s ones, and a
second experiment basing on the same experiments as before and the experienced
gained due to their first experiment.

The factors considered in each experiment are listed below in Table 1.

Table 1. Factors

Factor B-S K-L M-M J-V(1) J-V(2)

Technique
√ √ √ √

Program
√ √ √ √ √

Subjects experience
√

Application order
√

Defect type
√ √

Inspection Method
√

Program version
√

In the studies B-S, K-L and J-V conducted, the same testing techniques are
used as alternatives to the technique factor, these are: code reading, functional
testing and structural testing. The authors M-M apply the code reading techni-
que with two different approaches: inspections based on paper and inspections
based on software tools. Not only they have in common the technique, but also
they have in common the program as a factor. Each experiment has also factors
that differ from the ones in the other experiments: B-S consider the experience
of the subjects, K-L the order in which the techniques are applied, M-M the
inspection method, J-V consider the defect type in both experiments, and in the
last one add the program version.

The parameters considered in each experiment are shown in Table 2.

Table 2. Parameters

Parameter B-S K-L M-M J-V(1) J-V(2)

Language
√ √ √ √ √

Program size
√ √ √ √ √

Defects
√ √ √ √ √

Subjects
√ √ √ √

Every experiment sets its parameters, such us the program size, the language
in which these are programmed and their defects. Subjects are considered as
parameter by K-L, J-V y M-M, while for B-S they are a factor, given the different
levels of experience in their design.



The characteristics of the programs used in the experiments are presented in
Table 3.

Table 3. Characteristics of the programs

Characteristics B-S K-L M-M J-V(1) J-V(2)

Quantity of pro-
grams

4 3 2 4 3

Program size(LOCS) 169, 145, 147
y 365

set of fun-
ctions from
10 to 30

147 and
143

200 200

Quantity of defects 34 in whole not specified 12 for each
program

9 for each
program

7 for each
program

Language Fortran and
Simpl-T

C C++ C C

All the programs to be tested are considered small in every experiment (con-
tain less than 500 LOCS); the development language used by K-L and J-V is C,
by M-M is C++ and the one used by B-S is Fortran and Simpl-T. The number
of defects in J-V’s first experiment is 9, and in the second one is 7, while in
M-M’s is 12. In those experiments the number of defects is the same for every
program. The four programs used by B-S differ on their quantity of defects, a
total of 34. In the case of K-L, the number of defects is not specified.

The main characteristics of the subjects are presented in Table 4.

Table 4. Characteristics of the subjects

Characteristics B-S K-L M-M J-V(1) J-V(2)

Quantity 74 50 43 196 46

Experience 8 advanced,
24 interme-
diate, 42
junior

only one le-
vel conside-
red

only one le-
vel conside-
red

only one le-
vel conside-
red

only one le-
vel conside-
red

Experience level Students from
the University
of Maryland,
Programming
professionals
from NASA
and Sciences
Corporation

3rd and
4th grade
students

3rd grade
students

5th grade
students

5th grade
students

The studies level as well as the experience of the subjects vary greatly from
experiment to experiment. In B-S’s experiment, subjects with different levels of
experience (advanced, intermediate and junior) are chosen in order to be repre-



sentative of different levels of knowledge of reality. While in K-L’s the subjects
are students in third and fourth year from the University of Kaiserslautern.
They have some experience in C, but even so, they have a previous training in
the usage of techniques and language. This previous training is also put into
practice in both J-V’s experiments, who choose inexperienced students in the
fifth year from the Computer Sciences School, Polytechnic University of Madrid.
The subjects involved in M-M’s experiment are in the third year of the career,
have a solid basis on Scheme, C++ and Eiffel programming, are highly moti-
vated by the experience given it is associated with a major class project and
therefore they are graded on their work.

Some design decisions related to each experiment are shown in Table 5.
Both B-S and K-L used the same classification scheme for defects, J-V a sub-

classification from that scheme while M-M did not classified any defect found.
The scheme used is that proposed in Basili’s article, in which defects are clas-
sified as omission and commission at a first level. The commission defects are
those which appear as a result of an incorrect segment of existing code. Omis-
sion defects are those which result when the programmer omits including an
entity. Besides, the classification system is divided to distinguish the defect ty-
pes: initialization, calculation, control, interface, data and cosmetics. According
to the designs, all the authors decide to make a training prior to the experiment
in order to present the subjects with the techniques to be used. The B-S’s ex-
periment is divided in 5 sessions. The first one is training, the following three
consist of the experiment itself and a follow-up session. K-L’s and M-M’s expe-
riments consist of two experiment sessions after a training phase. J-V organize
the experiment in five sessions: the training session and four execution ones. All
through B-S’s experiment four programs are used, but in each session three out
of the four are tested, thus there is a combination of programs never tested. In
the case of K-L’s, M-M’s and J-V’s experiments all the programs are tested in
every session. In K-L’s are three programs, in M-M’s two, and four and three in
J-V’s experiments, respectively.

Table 6 presents the characteristics of the process followed in each experi-
ment.

The total number of subjects in B-S’s experiment is 72, divided in: 8 ad-
vanced, 24 intermediate and 42 junior. At the same time they are organized as
follows: 29 in the first session, 13 in the second and 32 in the third one. In the
first two sessions only subjects with intermediate and junior levels participate,
while in the third session advanced subjects are also involved. In K-L’s fewer
subjects are involved: 27 in the first session and 23 different subjects in the se-
cond one. The number of subjects in M-M’s experiment is close to K-L’s: 43. In
this case they are organized in two sessions: 22 and 21 subjects respectively. At
the same time they are divided in working groups: six groups of three subjects
and one of four in the first session, and seven groups of three subjects in the
second one. The total number of subjects in J-V’s first experiment rises to 196,
organized in 8 groups of 12 subjects (four groups apply structural techniques
and the other four apply functional techniques), and four groups of 25 subjects



Table 5. Design decisions

Exp Techniques Defect classification Response variables

B-S Functional testing,
Structural testing
and Code reading

Defined by Basili Number and percentage of de-
fects detected, total time of
detection and defect detec-
tion rate. For functional testing
and Structural testing: num-
ber of executions, CPU time
consumed, maximum coverage
of sentences obtained, time of
connection used, number and
percentage of defects observa-
ble from the data, and per-
centage of defects observable
from the data that are actua-
lly found by the subjects.

K-L Functional testing,
Structural testing
and Code reading

Defined by Basili. Each time motivation. Lan-
guage abilities. Working time.
Abilities applying defect detec-
tion techniques. Time spent on
each step. Number of failures
revealed. Number of failures
observed. Total number of de-
fects detected. Number of de-
fects detected by chance. Num-
ber of defects detected by appl-
ying the techniques.

M-M Code Reading Does not classify For each subject and group the
number of defects correctly de-
tected and the number of false
positives are registered. The
gains and losses on inspections
made in groups. Frequency of
detection for each defect, both
on the inspections based on pa-
per and on the tool based ones.

J-V(1) Functional testing,
Structural testing
and Code reading

Subclassified by Ba-
sili (types considered:
initialization, control
and cosmetics)

For each defect number of sub-
jects that generate a test case
able to detect the defect.

J-V(2) Functional testing,
Structural testing
and Code reading

Idem experiment 1 Number of subjects that gene-
rate a test case able to detect
the defect.

(apply code reading). In the second experiment the subjects are 46, divided in
six groups from 7 to 8 subjects.



In the process followed by Basili, three out of the four programs are used
in each phase, and every subject uses the three techniques and tests the three
programs. In each phase every subject tests the same program on the same day.
The K-L’s experiment consists of two internal replications, for which three days
of a week are settled. Each day a different program is tested by applying the
three techniques. The first day participate 23 students, the second 19 and the
third day 15. The inspection process of M-M’s experiment takes two sessions. The
first session is of individual detection and the second is when the consolidation is
achieved after working in groups. The experiment is conducted for a period of 10
weeks. During the first six weeks the students are trained. During the remaining
four the experiment is performed. The inspection consists of inspecting the source
code using a check list, considering the specification of the program.

In M-M’s every subject applies both inspections and works on the two pro-
grams. In J-V’s first experiment a session is carried out each day using one
program, and each of the three groups execute a different technique from the
three possible ones. The intention of J-V’s design is to eliminate the validity
threat of the learning, while for K-L the intention is to minimize this threat
by assigning the subjects each technique and program only once. In the second
experiment of J-V the design is adapted so all the subjects apply every techni-
que. It is organized in three days, and each day only one program and all the
techniques are executed. Each of these is executed by two different groups.

The general conclusions reached in each experiment are presented in Table
7.

The complementary conclusions reached in each experiment are presented in
Table 8.

Both B-S and K-L reached the conclusion that code reading technique is as
effective as structural and functional testings when it comes to the number of
defects detected. They also concluded that subjects were more efficient when ap-
plying functional testing. M-M concluded that there is no big difference between
inspections based on paper and those based on the tool, either it is individual
or working in group. With regard to J-V’s first experiment, they concluded that
the number of subjects that detect a defect depends not only on the program
used but also on the technique applied and the defect itself. In addition to this,
code reading technique is less sensitive to defect hiding than the other techni-
ques. Functional testing behaves better than the structural testing technique
in most cases, but the cases in which the two techniques behave identically, or
one better than the other, occur indistinctly for each defect type. According
to their second experiment, they concluded that regardless of the defect type,
code reading technique is not as effective as functional and structural techniques.
Another conclusion is that functional and structural techniques behave identi-
cally. The addition of the program version in this last experiment has an impact
on the number of subjects that finds a defect. More subjects develop test cases
that detect the defects in a version while fewer do it in the other, regardless of
the program, technique and defect.



4 Comments on the Articles.

In most of the cases, the defects present on the programs are injected in the code.
In comparison with the real practice of the industry, we consider this practice
tends to make the conditions in which the experiment is executed less credible.

The differences between the abilities and experience of the subjects are con-
sidered only by B-S, as the level of experience is considered a factor. In the rest
of the experiments the level of experience is homogenized by similar amounts
of training, and students with similar characteristics are chosen (for example:
in the same year of the career, or course). We think B-S’s choice allows us to
gather information more specific on the impact that the differences between sub-
jects and the number of defects that these detect has. This type of information
cannot be obtained from the other experiments. It is important to consider that
classifying the subjects according to their level of abilities is not always possible,
in order to do so the subjects have to be adequately classified.

One aspect in common to all the experiments is the intention of minimizing
the risk of information to be shared among the subjects. Several strategies are
applied such us to organize the subjects so they work on the same program on
the same day.

5 Conclusions

This paper presents a comparison framework for formal experiments intended to
study the effectiveness, cost and efficiency of different testing techniques. This
framework is developed in order to provide formality when comparing different
experiments. These comparisons are not trivial due to the great variability of
the characteristics of the experiments.

In addition to this, the application of the framework in four formal experi-
ments is presented. The application of the framework is the comparison of each of
these experiments itself. As a result, a better understanding of the more relevant
aspects of every experiment is achieved, and can be easily compared considering
various relevant aspects. However, the framework needs refining and other cha-
racteristics of the experiments should be added. For this kind of experiments,
some aspects should also be detailed, such us the techniques applied.

A refining of the framework is currently underway. The intention is not only
to improve the comparison framework, but also to be able to count with a group
of basic characteristics that any researcher should determine when conducting
a formal experiment. If all these characteristics were clearly described by each
researcher in every report after performing an experiment, more general conclu-
sions could be achieved and it would be easier to replicate experiments.

Determining the best technique according to the case is far from being done,
however, many formal experiments that have already been conducted in addition
to others under execution contain lots of important information. The framework
presented shares light on how to analyze the information gathered in a precise
way.



Table 6. Characteristics of the process

Exp Organization of the
subjects

Training Process

B-S 8 advanced, 24 inter-
mediate and 42 ju-
nior. First session 29,
Second 13 and third
32.

The first session con-
sists of the initial
training. Subjects are
presented with simi-
lar types of trainings.

In each phase, three out of the
four programs are used, and
every subject applies the th-
ree techniques and tests the th-
ree programs. Each phase con-
sists of 5 sessions: an initial
training, three testing sessions
and a follow-up session. In each
phase every subject tests the
same program on the same day.

K-L First replication: 27
subjects. Second re-
plication: 23 students
the first day, 19 the
second and 15 the
third day

The subjects are pre-
sented with the tes-
ting techniques and
trained prior to the
execution

The experiment consists of two
internal replications, which are
conducted in three settled days
out of a week. Each day a diffe-
rent program is tested with the
three techniques. The same gui-
delines as in the training were
used.

M-M Session 1 consists of
six groups of three
subjects and one of
four, while session
2 consists of seven
groups of three sub-
jects.

During the first six
weeks of the experi-
ment the subjects are
trained

The process of inspection ta-
kes two sessions. The first one
is of individual detection and
the second consists of working
in groups to reach consolida-
tion. The experiment is conduc-
ted for 10 weeks, during the last
four the inspections are execu-
ted. These consist of inspecting
the source code using a check
list, considering the specifica-
tion of the program.

J-V(1) Consists of 8 groups
of 12 subjects (4 test
with structural tech-
niques and the ot-
her four with functio-
nal techniques), and
4 groups of 25 sub-
jects (testing with
code reading)

During the initial ses-
sion the training is
conducted

The experiment is organized in
5 sessions, during the last four
the testing of the programs is
performed. Each day a session
is executed, each of the three
groups execute a program with
a different technique from the
three available ones.

J-V(2) Consists of six groups
from seven to eight
subjects

The design is changed so every
group execute all the techni-
ques. It is organized in three
days, and each day only one pro-
gram and all the techniques are
executed. Each of these is exe-
cuted by two different groups.



Table 7. General Conclusions of the authors

Exp General conclusion

B-S According to the number of defects detected and
the associated cost, code reading technique is as
effective as functional and structural testings. The
efficiency, effectiveness and cost depend on the
type of software under test.

K-L When detecting defects, any technique can be as
effective as the others, if time is not considered
an important aspect and every subject lacks of
experience in the language as well as in the three
techniques under study.

M-M There is no big difference between inspections ba-
sed on paper and those based on the tool, either
it is individual or working in group.

J-V(1) The number of subjects that detect a defect de-
pends not only on the program used but also on
the technique applied and the defect itself. Some
defects behave better when certain programs are
used as well as defects that do so when certain
techniques are applied.

J-V(2) Code reading always behaves worse than the fun-
ctional and structural techniques, indistinctly for
the defect type. With regard to functional and
structural techniques, they both behave identica-
lly. The program version influences on the number
of subjects that detect a defect.



Table 8. Complementary Conclusions of the authors

Exp Complementary conclusions

B-S The advanced subjects detected more defects and
were more efficient when applying code reading
than functional and structural testing. Besides,
the number of defects found with functional tes-
ting was larger than with structural testing. In-
termediate and junior subjects were almost as ef-
ficient and effective when applying the three te-
chniques. Code reading technique detected more
interface defects than did either of the other tech-
niques, while functional testing did so with control
defects. When applying code reading, the subjects
gave the most accurate estimates, while functional
testers gave the least accurate estimates.

K-L Subjects were more efficient when applying fun-
ctional testing.

M-M Significant differences are not found between both
methods as to the number of false positives found,
nor in the gained or lost cost due to the meetings.

J-V(1) Code reading technique is less sensitive to defect
hiding than the other techniques. Functional tes-
ting behaves better than the structural testing te-
chnique in most cases, but the cases in which the
two techniques behave identically, or one better
than the other, occur indistinctly for each defect
type.

J-V(2) The number of subjects that detect a defect by
applying the reading technique does not depend
on the observability of the defect. More subjects
develop test cases which detect more defects with
one version than with the other, regardless of the
program, the technique and the defect.



References

1. Myers, G.J.: A controlled experiment in program testing and code walkth-
roughs/inspections. Communications of the ACM 21(9) (September 1978) 760–768

2. Vallespir, D., Herbert, J.: Effectiveness and cost of verification techniques: Prelimi-
nary conclusions on five techniques. In: Proceedings of the Mexican International
Conference in Computer Science. (2009)

3. Moreno, A., Shull, F., Juristo, N., Vegas, S.: A look at 25 years of data. IEEE
Software 26(1) (Jan.–Feb. 2009) 15–17

4. Basili, V.R., Selby, R.W.: Comparing the effectiveness of software testing strategies.
IEEE Transactions on software engineering 13(12) (1987) 1278–1296

5. Kamsties, E., Lott, C.M.: An empirical evaluation of three defect-detection tech-
niques. In: Proceedings of the Fifth European Software Engineering Conference.
(1995) 362–383

6. Macdonald, F., Miller, J.: A comparison of tool-based and paper-based software
inspection. Empirical Software Engineering 3(3) (1998) 233–253

7. Juristo, N., Vegas, S.: Functional testing, structural testing, and code reading:
What fault type do they each detect? Empirical Methods and Studies in Software
Engineering 2765/2003 (2003) 208–232




