ERGODIC MEASURES WITH INFINITE ENTROPY

ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

Abstract

We construct ergodic probability measures with infinite metric entropy for typical continuous maps and homeomorphisms on compact manifolds. We also construct sequences of such measures that converge to a zero-entropy measure.

1. Introduction

Let M be a compact manifold with finite dimension $m \geq 1$, with or without boundary. Let $C^{0}(M)$ be the space of continuous maps $f: M \rightarrow M$ with the uniform norm:

$$
\|f-g\|_{C^{0}}:=\max _{x \in M} \operatorname{dist}(\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x})) \quad \forall f, g \in C^{0}(M)
$$

We denote by $\operatorname{Hom}(M)$ the space of homeomorphisms $f: M \rightarrow M$ with the uniform norm:
$\|f-g\|_{\text {Hom }}:=\max \left\{\|f-g\|_{C^{0}},\left\|f^{-1}-g^{-1}\right\|_{C^{0}}\right\} \quad \forall f, g \in \operatorname{Hom}(M)$.
A subset $\mathcal{S} \subset C^{0}(M)$ (or $\left.\mathcal{S} \subset \operatorname{Hom}(M)\right)$ is called $a G_{\delta}$-set if it is the countable intersection of open subsets of $C^{0}(M)$ (resp. Hom (M)). We say that a property P of the maps $f \in C^{0}(M)$ (or $f \in \operatorname{Hom}(M)$) is typical, or that typical maps satisfy P, if the set of maps that satisfy P contains a dense G_{δ}-set in $C^{0}(M)$ (resp. $\left.\operatorname{Hom}(M)\right)$.

The main result of this article is the following theorem.
Theorem 1. The typical map $f \in C^{0}(M)$ has an ergodic Borel probability measure μ such that $h_{\mu}(f)=+\infty$.

In the case that M is a compact interval, Theorem 1 was proved in [CT]. Yano proved that typical continuous maps of compact manifolds with or without boundary have infinite topological entropy [Ya]. Therefore, from the variational principle, there exists invariant measures with metric entropies as large as wanted. Nevertheless, this property alone

[^0]does not imply the existence of invariant measures with infinite metric entropy. In fact, it is well known that the metric entropy function $\mu \rightarrow h_{\mu}(f)$ is not upper semi-continuous for C^{0}-typical systems. Moreover, we prove that it is strongly non upper semi-continuous in the following sense:

Theorem 2. For a typical map $f \in C^{0}(M)$ there exists a sequence of ergodic measures μ_{n} such that

$$
h_{\mu_{n}}=+\infty \quad \forall n \geq 1, \quad \lim _{n \rightarrow+\infty}^{*} \mu_{n}=\mu, \quad h_{\mu}=0
$$

where lim* denotes the limit in the space of probability measures endowed with the weak* topology.

Even if it were a-priori known that some f-invariant measure μ has infinite metric entropy, this property alone would not imply the existence of ergodic measures with infinite metric entropy as Theorems 1 and 2 state. Actually, if $\mu \mathrm{had}$ infinitely many ergodic components, to prove that the metric entropy of at least one of its ergodic components must be larger or equal than the entropy of μ, one needs again the upper semi-continuity of the metric entropy function (see for instance [Ke, Theorem 4.3.7, p. 75]).

Yano also proved that typical homeomphisms on manifolds of dimension 2 or larger, have infinite topological entropy [Ya]. Thus one wonders if Theorems 1 and 2 hold also for homeomorphisms. We give a positive answer to this question.

Theorem 3. If the dimension of the manifold M is at least 2, then the typical homeormorphism $f \in \operatorname{Hom}(M)$ has an ergodic Borel probability measure μ such that $h_{\mu}(f)=+\infty$.

Theorem 4. If the dimension of the manifold M is at least 2, then for a typical homeomorphism $f \in \operatorname{Hom}(M)$ there exists a sequence of ergodic measures μ_{n} such that

$$
h_{\mu_{n}}=+\infty \quad \forall n \geq 1, \quad \lim _{n \rightarrow+\infty}^{*} \mu_{n}=\mu, \quad h_{\mu}=0 .
$$

1.1. Open questions. If f is Lipschiz then no invariant measure has infinite entropy, since its topological entropy is finite. The following question arises: do Theorems 1 and 3 hold also for maps with more regularity than continuity but lower regularity than Lipschiz? For instance, do they hold for Hölder-continuous maps?
"A-priori" there is a chance to answer positively this question for one-dimensional Hölder continuous endomorphisms, because in such a case, the topological entropy is typically infinite Ha]. Also for biHölder homeomorphisms on manifolds of dimension 2 or larger, there
is a chance to answer positively the above question, because their topological entropy is also typically infinite [FHT], [FHT1]. In this article we will focus only on the C^{0}-case, and leave for further research the eventual adaptation of our proofs, if this adaptation is possible, to C^{α}-maps for homeomorphisms with $0<\alpha<1$.

The hypothesis of Theorems 1 and 3 states that M is a compact manifold. It arises the following question: do some of the results also hold in other compact metric spaces that are not manifolds? For instance, do they hold if the space is a Cantor set K ?

If the aim were just to construct $f \in \operatorname{Hom}(K)$ with ergodic measures with infinite metric entropy, the answer would be positive. But if the purpose were to prove that such homeomorphisms are typical in $\operatorname{Hom}(K)$, the answer would be negative.

In fact, Theorem 3 holds in particular for the 2-dimensional square $D^{2}:=[0,1]^{2}$. One of the steps of the proofs consists in constructing some fixed Cantor set $\Lambda \subset D^{2}$, and a homeomorphism h on M that leaves Λ invariant, and possesses an h-invariant ergodic measure supported on Λ with infinite metric entropy (see Lemma 3.1 and Remark 3.2). Since any pair of Cantor sets K and Λ are homeomorphic, we deduce that any Cantor set K supports a homeomorphism f and an f-ergodic measure with infinite metric entropy.

Nevertheless, the above phenomenon is not typical on a Cantor set K. On the one hand, there also exists homeomorphisms on K with finite, and even zero, topological entropy. (Take for instance $f \in \operatorname{Hom}(K)$ conjugated to the homeomorphism on the attractor of a Smale horseshoe, or to the attractor of the C^{1} - Denjoy example on the circle.) On the other hand, it is known that each homeomorphism on a Cantor set K is topologically locally unique; i.e., it is conjugated to any of its small perturbations [AGW]. Therefore, the topological entropy is locally constant in $\operatorname{Hom}(K)$. We conclude that the homeomorphisms on the Cantor set K with infinite metric entropy, that do exist, are not dense in $\operatorname{Hom}(K)$; hence they are not typical.
1.2. Organisation of the article. We construct a family \mathcal{H}, called models, of continuous maps in the cube $[0,1]^{m}$, including some homeomorphisms of the cube onto itself if $m \geq 2$, which have complicated behavior on a Cantor set (Definition 2.6). A periodic shrinking box is a compact set $K \subset M$ that is homeomorphic to the cube $[0,1]^{m}$ and such that for some $p \geq 1$: $K, f(K), \ldots, f^{p-1}(K)$ are pairwise disjoint and $f^{p}(K) \subset \operatorname{int}(K)$ (Definition 4.1). The main steps of the proofs of Theorems 1 and 3 are the following results.

Lemma 3.1 Any model $h \in \mathcal{H}$ in the cube $[0,1]^{m}$ has an h-ergodic measure ν such that $h_{\nu}(h)=+\infty$

Lemmas 4.2 and 4.5 Typical maps in $C^{0}(M)$, and typical homeormorphisms, have a periodic shrinking box.

Lemmas 4.8 and 4.9 Typical maps $f \in C^{0}(M)$, and typical homeomorphisms for $m \geq 2$, have a periodic shrinking box K such that the return map $\left.f^{p}\right|_{K}$ is topologically conjugated to a model $h \in \mathcal{H}$.

A good sequence of periodic shrinking boxes is a sequence $\left\{K_{n}\right\}_{n \geq 1}$ of periodic shrinking boxes such that accumulate (with the Hausdorff distance) on a periodic point x_{0}, and besides their iterates $f^{j}\left(K_{n}\right)$ also accumulate on the periodic orbit of x_{0}, uniformly for $j \geq 0$ (see Definition 5.1). The main step in the proof of Theorems 2 and 4 is Lemma 3.1 together with

Lemma 5.2 Typical maps $f \in C^{0}(M)$, and if $m \geq 2$ also typical homeomorphisms, have a good sequence $\left\{K_{n}\right\}$ of boxes, such that the return maps $\left.f^{p_{n}}\right|_{K_{n}}$ are topologically conjugated to models $h_{n} \in \mathcal{H}$.

2. Construction of the family of models.

We call a compact set $K \subset D^{m}:=[0,1]^{m}$ or more generally $K \subset M$ where M is an m-dimensional manifold a box if it is homeomorphic to D^{m}. Models are continuous maps of the $D^{m}:=[0,1]^{m}$. We will discuss separately the cases $m=1$ and $m \geq 2$.

Definition 2.1. (Models in the interval.)

Let $h \in C^{0}([0,1])$. We call h a model if $h([0,1]) \subset(0,1)$, and there exists an ergodic h-invariant measure ν such that $h_{\nu}(h)=+\infty$.

Lemma 2.2. [CT, Theorem 39](Existence of models $m=1$) The family of models in the interval is a dense G_{δ}-set in $C^{0}([0,1])$.
2.1. Models in dimension 2 or larger. In this subsection, we assume $m \geq 2$. We denote by $\operatorname{RHom}\left(D^{m}\right)$ the space of relative homeomorphisms $h: D^{m} \rightarrow D^{m}$ (i.e., f is a homeomorphism onto its image included in D^{m}), with the topology induced by:

$$
\|h-g\|_{R H o m}:=\max \left\{\|h-g\|_{C^{0}\left(D^{m}\right)},\left\|h^{-1}-g^{-1}\right\|_{C^{0}\left(h\left(D^{m}\right) \cap g\left(D^{m}\right)\right)}\right\} .
$$

Definition 2.3. (h-relation from a box to another).
Let $h \in C^{0}\left(D^{m}\right)$. Let $B, C \subset \operatorname{int}\left(D^{m}\right)$ be two boxes. We write

$$
B \xrightarrow{h} C \text { if } h(B) \cap \operatorname{int}(C) \neq \emptyset .
$$

Observe that this condition is open in $C^{0}\left(D^{m}\right)$ and also in $\operatorname{RHom}\left(D^{m}\right)$.

Figure 1. An atom A of generation 0 and two atoms B, C of generation 1 for a map f of D^{2}.

Figure 2. An atom A of generation 0, two atoms B, C of generation 1 , and 16 atoms of generation 2.

Definition 2.4. (Atoms of generation 0 and 1) (See Figure 1) We call a box $A \subset \operatorname{int}\left(D^{m}\right)$ an atom of generation 0 for h, if there exists two disjoint boxes $B_{1}, B_{2} \subset \operatorname{int}(A)$, which we call atoms of generation 1 such that

$$
B_{i} \xrightarrow{h} B_{j} \forall i, j \in\{1,2\} .
$$

If A is an atom of generation 0 and B_{1}, B_{2} are the two atoms of generation 1 , we denote $\mathcal{A}_{0}:=\{A\}, \mathcal{A}_{1}:=\left\{B_{1}, B_{2}\right\}$.

Definition 2.5. Atoms of generation $\mathbf{n} \geq 2$ (See Figure 2)
Assume by induction that the finite families $\mathcal{A}_{0}, \mathcal{A}_{1} \ldots, \mathcal{A}_{n-1}$ of atoms for $h \in C^{0}\left(D^{m}\right)$ of generations up to $n-1$ are already defined, such that the atoms of the same generation $j=1, \ldots, n-1$ are pairwise disjoint, contained in the interior of the $(j-1)$-atoms in such a way that all the $(j-1)$-atoms contain the same number of j-atoms and

$$
\# \mathcal{A}_{j}=2^{j^{2}} \forall j=0,1, \ldots, n-1
$$

Assume also that for all $j \in\{1, \ldots, n-1\}$ and for all $B \in \mathcal{A}_{j}$:

$$
\#\left\{C \in \mathcal{A}_{j}: B \xrightarrow{h} C\right\}=2^{j}, \quad \#\left\{D \in \mathcal{A}_{j}: D \xrightarrow{h} B\right\}=2^{j} .
$$

Denote

$$
\begin{gathered}
\mathcal{A}_{j}^{2^{*}}:=\left\{(B, C) \in \mathcal{A}_{j}^{2}: \quad B \xrightarrow{h} C\right\}, \\
\mathcal{A}_{j}^{3^{*}}:=\left\{(D, B, C) \in \mathcal{A}_{j}^{3}: \quad D \rightarrow_{h} B, \quad B \xrightarrow{h} C\right\} .
\end{gathered}
$$

We call the boxes of a finite collection \mathcal{A}_{n} of pairwise disjoint boxes, atoms of generation n, or n-atoms if they satisfy the following conditions (see Figure 22):

- Each atom of generation n is contained in the interior of an atom of generation $n-1$, and the interior of each atom $B \in \mathcal{A}_{n-1}$ contains exactly $2^{n} \cdot 2^{n-1}=2^{2 n-1}$ pairwise disjoint n-atoms, which we call the children of B. We denote

$$
\Omega_{n}(B):=\left\{G \in \mathcal{A}_{n}: G \subset \operatorname{int}(B)\right\}, \quad \# \Omega_{n}(B)=2^{2 n-1} \quad \forall B \in \mathcal{A}_{n-1}
$$

Then,

$$
\begin{gathered}
\mathcal{A}_{n}=\bigcup_{B \in \mathcal{A}_{n-1}}^{0} \Omega_{n}(B) \\
\# \mathcal{A}_{n}=\left(\# \mathcal{A}_{n-1}\right)\left(\# \Omega_{n}(B)\right)=2^{(n-1)^{2}} \cdot 2^{2 n-1}=2^{n^{2}}
\end{gathered}
$$

- For each pair $(D, B) \in \mathcal{A}_{n-1}^{2^{*}}$, the collection of children of B is partitioned in 2^{n-1} sub-collections $\Omega_{n}(D, B)$ as follows:

$$
\begin{gathered}
\Omega_{n}(D, B):=\left\{G \in \mathcal{A}_{n}: G \subset \operatorname{int}(B), \quad D \xrightarrow{h} G\right\} \forall(D, B) \in \mathcal{A}_{n-1}^{2^{*}}, \\
\# \Omega_{n}(D, B)=2^{n} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\Omega_{n}(B)=\bigcup_{D:(D, B) \in \mathcal{A}_{n-1}^{2^{*}}}^{\circ} \Omega_{n}(D, B) \forall B \in \mathcal{A}_{n-1}, \\
\# \Omega_{n}(B)=\left(\#\left\{D \in \mathcal{A}_{n-1}: D \rightarrow_{h} B\right\}\right) \cdot\left(\# \Omega_{n}(D, B)\right)= \\
2^{n-1} \cdot 2^{n}=2^{2 n-1} \forall B \in \mathcal{A}_{n-1} .
\end{gathered}
$$

- For each 3 -uple $(D, B, C) \in \mathcal{A}_{n-1}^{3^{*}}$ there exists exactly $2 n$-atoms, say G_{1}, G_{2} such that

$$
\begin{gathered}
\left\{G_{1}, G_{2}\right\}=\Gamma_{n}(D, B, C):=\left\{G \in \Omega_{n}(D, B) \subset \mathcal{A}_{n}: G \xrightarrow{h} C\right\}, \\
\# \Gamma_{n}(D, B, C)=2 .
\end{gathered}
$$

For example, in Figure 2 we have $\{F, G\}=\Gamma_{2}(C, B, C)$.
Besides, we assume the following properties for all $G \in \Gamma_{n}(D, B, C)$

$$
\begin{gathered}
h(G) \cap C^{\prime}=\emptyset \forall C^{\prime} \in \mathcal{A}_{n-1} \text { such that } C^{\prime} \neq C, \\
\text { and } G \xrightarrow{h} E \forall E \in \Omega_{n}(C) .
\end{gathered}
$$

From the above conditions we deduce:

$$
\begin{gathered}
\Omega_{n}(D, B)=\bigcup_{C:(B, C) \in \mathcal{A}_{n-1}^{2 *}}^{\circ} \Gamma_{n}(D, B, C) ; \\
\mathcal{A}_{n}=\bigcup_{(D, B, C) \in \mathcal{A}_{n-1}^{3^{*}}}^{\circ} \Gamma_{n}(D, B, C) ;
\end{gathered}
$$

and for any pair $(G, E) \in \mathcal{A}_{n}^{2}$:
$G \rightarrow_{h} E$ if and only if $\exists(D, B, C) \in \mathcal{A}_{n-1}^{3^{*}}$ such that

$$
G \in \Gamma_{n}(D, B, C), E \in \Omega_{n}(C)
$$

$$
G \not \neg_{h}^{n} E \quad \text { if and only if } \quad h(G) \cap \operatorname{int}(E)=\emptyset
$$

We also deduce the following properties for any atom $G \in \mathcal{A}_{n}$:

$$
\#\left\{E \in \mathcal{A}_{n}: G \rightarrow_{h} E\right\}=2^{n}, \quad \#\left\{E \in \mathcal{A}_{n}: E \rightarrow_{h} G\right\}=2^{n}
$$

In fact, on the one hand for each atom $G \in \mathcal{A}_{n}$, the number of atoms $E \in \mathcal{A}_{n}$ such that $G \rightarrow_{h} E$ equals the number $\# \Omega_{n}(B, C)=2^{n}$, where B and C are the unique ($n-1$)-atoms such that $G \in \Gamma_{n}(D, B, C)$ for some $D \in \mathcal{A}_{n-1}$. On the other hand, the number of atoms $E \in \mathcal{A}_{n}$ such that $E \rightarrow_{h} G$ equals

$$
\left(\# \Gamma_{n}(D, B, C)\right) \cdot\left(\#\left\{D \in \mathcal{A}_{n-1}: D \rightarrow_{h} B\right)=2 \cdot 2^{n-1}=2^{n}\right.
$$

where B and C are the unique $(n-1)$-atoms such that $E \in \Omega_{n}(B, C)$.
Since $2^{n}<2^{n^{2}}$ if $n>1$, we conclude that not all the pairs (G, E) of atoms of generation $n \geq 2$ satisfy $G \xrightarrow{h} E$.
Remark. The above conditions are open in $C^{0}\left(D^{m}\right)$ and in $\operatorname{RHom}\left(D^{m}\right)$.

Definition 2.6. (Models in dimension 2 or larger)

We call $h \in C^{0}\left(D^{m}\right)$ a model if $h\left(D^{m}\right) \subset \operatorname{int}\left(D^{m}\right)$, and there exists a sequence $\left\{\mathcal{A}_{n}\right\}_{n \geq 0}$ of finite families of pairwise disjoint boxes contained in $\operatorname{int}\left(D^{m}\right)$ that are atoms of generation $0,1, \ldots, n, \ldots$ respectively for h (according to Definitions 2.4, and 2.5) such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \max _{A \in \mathcal{A}_{n}} \operatorname{diam} A=0 \tag{1}
\end{equation*}
$$

Denote by \mathcal{H} the family of all the models in $C^{0}\left(D^{m}\right)$.
Remark 2.7. If $m \geq 2$, the family \mathcal{H} is a non-empty $G_{\boldsymbol{\delta}}$-set in $C^{0}\left(D^{m}\right)$ and $\mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right)$ is a non-empty G_{δ}-set in $\operatorname{RHom}\left(D^{m}\right)$. In fact, as remarked at the end of Definition 2.5, for each $n \geq 1$ the family \mathcal{H}_{n} of maps that have atoms up to generation n, is open in $C^{0}\left(D^{m}\right)$ and also in $R \operatorname{Hom}\left(D^{m}\right)$. Besides, the conditions $h\left(D^{m}\right) \subset \operatorname{int}\left(D^{m}\right)$ and $\max _{A \in \mathcal{A}_{n}} \operatorname{diam}(A)<\epsilon_{n}$ are also open.

2.2. Paths of atoms.

Definition 2.8. Let $h \in \mathcal{H} \subset C^{0}\left(D^{m}\right), l \geq 2$ and let $\left(A_{1}, A_{2}, \ldots, A_{l}\right)$ be a l-uple of atoms for h of the same generation n, such that

$$
A_{i} \xrightarrow{h} A_{i+1} \quad \forall i \in\{1,2, \ldots, l-1\} .
$$

We call $\left(A_{1}, A_{2}, \ldots, A_{l}\right)$ an l-path of n-atoms from A_{1} to A_{l}. Let $\mathcal{A}_{n}^{l^{*}}$ denote the family of all the l-paths of atoms of generation l.

Lemma 2.9. For all $n \geq 1$, and for all $A_{1}, A_{2} \in \mathcal{A}_{n}$ there exists $l \geq 1$ and an l-path of n-atoms from A_{1} to A_{2}.

Proof. For $n=1$, the result is trivial with $l=1$ (see Definition 2.4). Let us assume by induction that the result holds for some $n-1 \geq 1$ and let us prove it for n.

Let $E, F \in \mathcal{A}_{n}$. From Definition 2.5, there exists unique atoms $B_{-1}, B_{0}, B_{1} \in \mathcal{A}_{n-1}$ such that $E \in \Gamma_{n}\left(B_{-1}, B_{0}, B_{1}\right)$. Then $B_{-1} \xrightarrow{h} B_{0}$, $E \subset B_{0}$ and

$$
\begin{equation*}
E \xrightarrow{h} E_{1} \forall E_{1} \in \Omega_{n}\left(B_{0}, B_{1}\right) . \tag{2}
\end{equation*}
$$

Analogously, there exists unique atoms $B_{*}, B_{*+1} \in \mathcal{A}_{n-1}$ such that $F \in \Omega_{n}\left(B_{*}, B_{*+1}\right)$. Then $B_{*} \xrightarrow{h} B_{*+1}, F \subset B_{*+1}$ and

$$
\begin{equation*}
E_{*} \xrightarrow{h} F \forall E_{*} \in \bigcup_{\substack{B_{*-1} \in \mathcal{A}_{n-1}: \\ B_{*-1} \rightarrow B_{*}}} \Gamma_{n}\left(B_{*-1}, B_{*}, B_{*+1}\right) \tag{3}
\end{equation*}
$$

Since $B_{1}, B_{*} \in \mathcal{A}_{n-1}$ the induction hypothesis ensures that there exists l and an l-path $\left(B_{1}, B_{2}, \ldots, B_{l}\right)$ from B_{1} to $B_{l}=B_{*}$. We write $B_{*-1}=B_{l-1}, B_{*}=B_{l}, B_{*+1}=B_{l+1}$. So Assertion (3) becomes

$$
\begin{equation*}
E_{l} \xrightarrow{h} F \quad \forall E_{l} \in \Gamma_{n}\left(B_{l-1}, B_{l}, B_{l+1}\right) \tag{4}
\end{equation*}
$$

Taking into account that $B_{i-1} \rightarrow_{h} B_{i}$ for $1<i \leq l$, and applying Definition 2.5, we deduce that if $E_{i-1} \in \Gamma_{n}\left(B_{i-2}, B_{i-1}, B_{i}\right) \subset \mathcal{A}_{n}$, then

$$
\begin{equation*}
E_{i-1} \rightarrow_{h} E_{i} \quad \forall E_{i} \in \Omega_{n}\left(B_{i-1}, B_{i}\right) \quad \forall 1<i \leq l . \tag{5}
\end{equation*}
$$

Finally, joining Assertions (2), (4) and (5) we obtain an $(l+2)$-path $\left(E, E_{1}, \ldots, E_{l}, F\right)$ from E to F, as wanted.

Lemma 2.10. Let $n, l \geq 2$. For each l-path $\left(B_{1}, \ldots, B_{l}\right)$ of $(n-1)$ atoms there exists an l - path $\left(E_{1}, E_{2}, \ldots, E_{l}\right)$ of atoms of generation n such that $E_{i} \subset \operatorname{int}\left(B_{i}\right)$ for all $i=1,2, \ldots, l$.

Proof. In the proof of Lemma 2.9 for each l-path $\left(B_{1}, B_{2}, \ldots, B_{l}\right)$ of $(n-1)$-atoms we have constructed the l-path $\left(E_{1}, E_{2}, \ldots, E_{l}\right)$ of n atoms as wanted.
2.3. Construction of models in dimension larger than 1. Lemma 2.2 states that the family \mathcal{H} of models is a nonempty G_{δ}-set in $C^{0}([0,1])$. In the case $m \geq 2$, we will prove the following result, whose difficult part is b). The difficulty would not be so, if we were only constructing models h. For further uses in Section 4 , we need h to be besides isotopic to an arbitrarily given homeomorphism $f \in R \operatorname{Hom}\left(D^{m}\right)$.

Lemma 2.11. If $m \geq 2$, then
a) The family \mathcal{H} of models is a nonempty G_{δ}-set in $C^{0}\left(D^{m}\right)$ and $\mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right)$ is a nonempty G_{δ}-set in $\operatorname{RHom}\left(D^{m}\right)$.
b) For all $f \in R \operatorname{Hom}\left(D^{m}\right)$ such that $f\left(D^{m}\right) \subset \operatorname{int}\left(D^{m}\right)$, there exists $\psi \in \operatorname{Hom}\left(D^{m}\right)$ and $h \in \mathcal{H} \cap R \operatorname{Hom}\left(D^{m}\right)$ such that

$$
\left.\psi\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}}, \quad \text { and } \quad \psi \circ f=h .
$$

Proof. Taking into account Remark 2.7, to prove Lemma 2.11 it is enough to prove part b).

We will divide the construction of ψ and h into several steps:
Step 1. Construction of the atoms of generation 0 and 1.
Since $f\left(D^{m}\right) \subset \operatorname{int}\left(D^{m}\right)$, there exists a box $A_{0} \subset \operatorname{int}\left(D^{m}\right)$ such that $f\left(D^{m}\right) \subset \operatorname{int}\left(A_{0}\right)$. The box A_{0} is the atom of generation 0 or 0 -atom for a map $h_{1} \in R H o m\left(D^{m}\right)$ that we construct in this step. Let $\mathcal{A}_{0}:=\left\{A_{0}\right\}$. We choose two pairwise disjoint boxes B_{1} and B_{2} contained in $\operatorname{int}\left(A_{0}\right)$. They are the atoms of generation 1 , or for short 1 -atoms for h_{1}. Let $\mathcal{A}_{1}:=\left\{B_{1}, B_{2}\right\}$. We choose them small enough such that

$$
\begin{equation*}
\max _{B \in \mathcal{A}_{1}} \max \{\operatorname{diam}(B), \operatorname{diam}(f(B))\}<\frac{1}{2} . \tag{6}
\end{equation*}
$$

Let K be an m-dimensional box $(m \geq 2)$ and consider any two finite sets $\left\{x_{1}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, \ldots, y_{k}\right\}$ of points in int (K). A simple proof by induction on k shows that there exists a homeomorphism $\psi: K \rightarrow K$ which is the identity on ∂K and satisfies $\psi\left(x_{i}\right)=y_{i}$. We apply this result to the box A_{0} as follows. For each $B \in \mathcal{A}_{1}$ we choose two different points $\widetilde{e}_{i}(B) \in \operatorname{int}(B), \quad i=1,2$. Then there exists a homeomorphism $\widetilde{\psi}_{1}: A_{0} \rightarrow A_{0}$ such that

$$
\left.\widetilde{\psi}_{1}\right|_{\partial A_{0}}=\left.\mathrm{id}\right|_{\partial A_{0}}, \quad \widetilde{\psi}_{1}\left(f\left(\widetilde{e}_{i}\left(B_{j}\right)\right)=\widetilde{e}_{j}\left(B_{i}\right) \quad \forall i, j \in\{1,2\} .\right.
$$

Now, we extend $\widetilde{\psi}_{1}$ to be a homeomorphism of the whole box D^{m} by defining $\widetilde{\psi}_{1}(x)=x \quad \forall x \in D^{m} \backslash A_{0}$. In particular

$$
\left.\widetilde{\psi}_{1}\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}} .
$$

Define

$$
\widetilde{h}_{1}:=\widetilde{\psi}_{1} \circ f .
$$

Recalling Definitions 2.3 and 2.4 , we deduce that $B_{i} \xrightarrow{\widetilde{h}_{>}} B_{j}$ for all $i, j \in\{1,2\}$. So A_{0} is an atom of generation 0 for \widetilde{h}_{1}, and B_{1}, B_{2} are its atoms of generation 1 .

Nevertheless, we will not use the homeomorphisms \widetilde{h}_{1} and $\widetilde{\psi}_{1}$ as they are. We will modify them to obtain new homeomorphisms h_{1} and ψ_{1} such that for any ordered 3 -uple $(D, B, C) \in \mathcal{A}_{1}$ the interior
of the intersection $h_{1}(D) \cap B \cap h_{1}^{-1}(C)$ is nonempty. This additional property will allow us to construct later the atoms of generation 2 for a new homeomorphism h_{2} without changing too much the previous homeomorphism h_{1}.

We will modify $\widetilde{\psi}_{1}$ only in the interiors of the boxes $f(B), B \in \mathcal{A}_{1}$, to obtain a new homeomorphism ψ_{1} such that $\psi_{1}(f(B))=\widetilde{\psi}_{1}(f(B))=$ $\widetilde{h}_{1}(B)$ for all $B \in \mathcal{A}_{1}$. Therefore, the same atom of generation 0 and the same two atoms of generation 1 for \widetilde{h}_{1}, will still be atoms of generations 0 and 1 for the new homeomorphism defined by $h_{1}:=\psi_{1} \circ f$.

From the construction of $\widetilde{\psi}$ and \widetilde{h}_{1}, for any ordered pair $(D, B) \in \mathcal{A}_{1}$ there exists a point $\widetilde{e}_{i}(B) \in \operatorname{int}\left(B \cap \widetilde{h}_{1}(D)\right) \neq \emptyset$. Denote by

$$
S(D, B)
$$

the connected component of $\left(B \cap \widetilde{h}_{1}(D)\right)$ such that $\widetilde{e}_{i}(B) \in \operatorname{int} S(D, B)$. Choose two different points

$$
e_{i}(D, B) \in \operatorname{int}(S(D, B)), \quad i=1,2,
$$

and a (one-to-one and surjective) permutation θ_{1} of the finite set

$$
\begin{equation*}
L_{1}:=\left\{e_{i}(D, B) \in \operatorname{int}(S(D, B)): \quad(D, B) \in\left(\mathcal{A}_{1}\right)^{2}, \quad i=1,2\right\} \tag{7}
\end{equation*}
$$

such that

$$
\theta_{1}\left(e_{i}(D, B)\right)=e_{k}(B, C)
$$

for some $C \in \mathcal{A}_{1}$ and some $k \in\{1,2\}$, in such a way that for each fixed ordered 3-uple $(D, B, C) \in\left(\mathcal{A}_{1}\right)^{3}$ there exists one and only one point $e_{i}(D, B)$ such that $\theta_{1}\left(e_{i}(D, B)\right)=e_{k}(B, C)$.

Now, for each $B \in \mathcal{A}_{1}$ we construct a homeomorphism

$$
\psi_{1}: f(B) \rightarrow \widetilde{\psi}_{1}(f(B))=\widetilde{h}_{1}(B)
$$

such that

$$
\left.\psi_{1}\right|_{\partial f(B)}=\left.\widetilde{\psi}_{1}\right|_{\partial f(B)}, \quad \psi_{1}\left(f\left(e_{i}(D, B)\right)=\theta_{1}\left(e_{i}(D, B)\right) \quad \forall D \in \mathcal{A}_{1}\right.
$$

Such ψ_{1} exists as the composition of $\widetilde{\psi}_{1}$ with a homeomorphism that leaves fixed the points of $\partial\left(\widetilde{\psi}_{1} \circ f(B)\right)$ for each both atoms $B \in \mathcal{A}_{1}$, and transforms each point $\widetilde{\psi}_{1} \circ f\left(e_{i}(D, B)\right)$ on $\theta_{1}\left(e_{i}(D, B)\right)$.

Now, we extend ψ_{1} to the whole box D^{m} by defining $\psi_{1}(x)=\widetilde{\psi}_{1}(x) \quad \forall x \in$ $D^{m} \backslash \bigcup_{B \in \mathcal{A}_{1}} f(B)$. In particular

$$
\left.\psi_{1}\right|_{\partial D^{m}}=\left.\widetilde{\psi}_{1}\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}}
$$

Define

$$
h_{1}:=\psi_{1} \circ f
$$

As mentioned at the beginning, the property $h_{1}(B)=\widetilde{h}_{1}(B)$ for both atoms $B \in \mathcal{A}_{1}$ implies that they are also atoms of generation 1 for h_{1}. But now, they have the following additional property:

There exists a one-to-one correspondence between the 3-uples
$(D, B, C) \in\left(\mathcal{A}_{1}\right)^{3}$ and the eight points of the set L_{1} in Equality (7), such that

$$
\begin{equation*}
e(D, B, C):=e_{i}(D, B) \in \operatorname{int}\left(S(D, B) \cap h_{1}^{-1}(S(B, C))\right) \tag{8}
\end{equation*}
$$

Hence $e(D, B, C) \in \operatorname{int}\left(h_{1}(D) \cap B \cap h_{1}^{-1}(C)\right)$.

Step 2. Construction of the atoms of generation n.

Assume by induction that we have constructed the families $\mathcal{A}_{0}, \mathcal{A}_{1}$, \ldots, \mathcal{A}_{n} of atoms up to generation n for $h_{n}=\psi_{n} \circ f$, where $\psi_{n} \in$ $\operatorname{Hom}\left(D^{m}\right)$ is a homeomorphism that leaves fixed the points of ∂D^{m}, and such that

$$
\begin{equation*}
\max _{B \in \mathcal{A}_{n}} \max \{\operatorname{diam}(B), \operatorname{diam}(f(B))\}<\frac{1}{2^{n}} \tag{9}
\end{equation*}
$$

Assume also the following two assertions for all $i=1, \ldots, n$:

- $h_{i}(x)=h_{i-1}(x) \quad \forall x \in D^{m} \backslash \bigcup_{B \in \mathcal{A}_{i-1}} B$;
- for all $(D, B, C) \in \mathcal{A}_{n}^{3^{*}}$ there exists a point $e(D, B, C)$ such that

$$
L_{n}:=\left\{e(D, B, C):(D, B, C) \in \mathcal{A}_{n}^{3 *}\right\}
$$

is h_{n}-invariant, and

$$
\begin{equation*}
e(D, B, C) \in \operatorname{int}\left(S(D, B) \cap h_{n}^{-1}(S(B, C))\right) \tag{10}
\end{equation*}
$$

where $S(D, B)$ and $S(B, C)$ are fixed connected components of $B \cap$ $h_{n}(D)$ and of $C \cap h_{n}(B)$ respectively.

Let us construct the family \mathcal{A}_{n+1} of atoms of generation $n+1$ and the homeomorphisms h_{n+1} and ψ_{n+1}. First, for each $(D, B) \in\left(\mathcal{A}_{n}\right)^{* 2}$ we choose a box $R(D, B)$ such that

$$
\begin{gather*}
e(D, B, C) \in \operatorname{int}(R(D, B)) \subset \operatorname{int}(S(D, B)) \tag{11}\\
\forall C \in \mathcal{A}_{n} \text { such that } B \xrightarrow{h_{n}} C .
\end{gather*}
$$

Note that $e(D, B, C) \in L_{n}$, the set L_{n} is h_{n}-invariant, and besides $e(D, B, C) \in \operatorname{int}\left(h_{n}^{-1}(S(B, C))\right)$, thus

$$
e(D, B, C) \in \operatorname{int}\left(R(D, B) \cap h_{n}^{-1}(R(B, C))\right) \neq \emptyset
$$

Then,

$$
h_{n}(e(D, B, C))=e(B, C, \cdot) \in \operatorname{int}(R(B, C))
$$

Next, for each $(D, B, C) \in \mathcal{A}_{n}^{3 *}$ we choose two pairwise disjoint boxes G_{1}, G_{2} contained in the interior of $R(D, B) \cap h_{n}^{-1}(R(B, C))$, satisfying

$$
\begin{equation*}
\max \left\{\operatorname{diam}\left(G_{i}\right), \operatorname{diam}\left(f\left(G_{i}\right)\right)\right\}<\frac{1}{2^{n+1}} \tag{12}
\end{equation*}
$$

Denote

$$
\begin{gathered}
\Gamma_{n+1}(D, B, C):=\left\{G_{1}, G_{2}\right\}, \\
\Omega_{n+1}(D, B):=\bigcup_{\substack{C \in \mathcal{A}_{n} \\
B \xrightarrow{h} C}}^{\circ} \Gamma_{n+1}(D, B, C), \\
\mathcal{A}_{n+1}:=\bigcup_{(D, B) \in \mathcal{A}_{n}^{2 *}}^{\circ} \Omega_{n+1}(D, B)=\bigcup_{(D, B, C) \in \mathcal{A}_{n}^{3 *}}^{\circ} \Gamma_{n+1}(D, B, C) .
\end{gathered}
$$

Note that for all $G \in \mathcal{A}_{n+1}$,

$$
G \in \Omega_{n+1}(D, B) \text { if and only if } G \subset \operatorname{int}(R(D, B)) .
$$

The boxes of the family \mathcal{A}_{n+1} will be the $(n+1)$-atoms of a new homeomorphism h_{n+1} that we construct as follows.

In the interior of each box $G \in \mathcal{A}_{n+1}$ we choose 2^{n+1} different points $\widetilde{e}_{i}(G), i=1,2 \ldots, 2^{n+1}$, and denote

$$
\widetilde{L}_{n+1}:=\left\{\widetilde{e}_{i}(G): G \in \mathcal{A}_{n}, 1 \leq i \leq 2^{n}\right\} .
$$

Then, we build a permutation $\tilde{\theta}$ of the set \widetilde{L}_{n+1} such that for all $(D, B, C) \in \mathcal{A}_{n}^{3^{*}}$, and for each box $G \in \Gamma_{n+1}(D, B, C)$, it transforms the point $\widetilde{e}_{i}(G) \subset \operatorname{int}(G) \subset \operatorname{int}(R(D, B))$ into the point

$$
\widetilde{\theta}\left(\widetilde{e}_{i}(G)\right)=\widetilde{e}_{k}(E) \in \operatorname{int}(R(B, C))
$$

for some $k \in\left\{1, \ldots, 2^{n+1}\right\}$ and for some box $E=E_{i} \in \Omega_{n+1}(B, C)$ satisfying $E_{i} \neq E_{j}$ if $i \neq j$.

We consider $\widetilde{\psi}_{n+1}$ defined by the following constraints. For each $(B, C) \in \mathcal{A}_{n}^{2 *}$ the homeomorphism

$$
\widetilde{\psi}_{n+1}: \psi_{n}^{-1}(R(B, C)) \rightarrow R(B, C)
$$

satisfies

$$
\begin{gathered}
\widetilde{\psi}_{n+1}(x)=\psi_{n}(x) \quad \forall x \in \psi_{n}^{-1}(\partial R(B, C))=f \circ h_{n}^{-1}(\partial R(B, C)), \\
\widetilde{\psi}_{n+1}(f(e))=\widetilde{\theta}(e) \quad \forall e \in \widetilde{L}_{n+1} \cap \operatorname{int}\left(h_{n}^{-1}(R(B, C))\right) .
\end{gathered}
$$

Such homeomorphism $\widetilde{\psi}_{n+1}$ exists because the finite set

$$
\left\{f(e): \quad e \in \widetilde{L}_{n+1} \cap \operatorname{int}\left(h_{n}^{-1}(R(B, C))\right)\right\}
$$

is contained in the interior of $f \circ h_{n}^{-1}(R(B, C))=\psi_{n}^{-1}(R(B, C))$), and coincides with

$$
\left\{f\left(e_{i}(G)\right): G \in \Gamma_{n+1}(D, B, C) \text { for some } D \in \mathcal{A}_{n}, i=1, \ldots, 2^{n+1}\right\}
$$

So, the corresponding images $\widetilde{\psi}_{n+1}(f(e))=\widetilde{\theta}(e)$ are the points of the finite set

$$
\begin{gathered}
\left\{\widetilde{\theta}\left(e_{i}(G)\right): G \in \Gamma_{n+1}(D, B, C) \quad \text { for some } D \in \mathcal{A}_{n}\right\}= \\
\left\{e_{k}(E): E \in \Omega_{n+1}(B, C)\right\}=\widetilde{L}_{n+1} \cap R(B, C),
\end{gathered}
$$

which is contained in the interior of $R(B, C))$.
After extending $\widetilde{\psi}_{n+1}$ to the whole cube D^{m} by putting it equal to ψ_{n} in the complement of $\bigcup_{(B, C) \in \mathcal{A}_{n}^{2 *}} \psi_{n}^{-1}(R(B, C))$, we define

$$
\widetilde{h}_{n+1}:=\widetilde{\psi}_{n+1} \circ f
$$

Since $\widetilde{h}_{n+1}(B)=h_{n}(B) \quad \forall B \in \mathcal{A}_{n}$, the same atoms up to generation n for h_{n} are still atoms up to generation n for \widetilde{h}_{n+1}. But besides, the boxes of the family \mathcal{A}_{n+1} are now $\left(n_{1}\right)$-atoms for \widetilde{h}_{n+1}.

Nevertheless, we will not adopt the homeomorphisms \widetilde{h}_{n+1} and $\widetilde{\psi}_{n+1}$ as they are. We will modify them to obtain new homeomorphisms h_{n+1} and ψ_{n+1} such that Assertion (10) also holds for $n+1$ instead of n. Precisely, modifying $\widetilde{\psi}_{n+1}$ only in the interiors of the boxes $f(G)$ for all the atoms $G \in \mathcal{A}_{n+1}$, we construct a new homeomorphism ψ_{n+1} such that $h_{n+1}:=\psi_{n+1} \circ f$ has the same atoms up to generation $n+1$ than \widetilde{h}_{n+1}. Let us describe how to build ψ_{n+1} :

From the construction of $\widetilde{\psi}_{n+1}$ and \widetilde{h}_{n+1}, for all $(G, E) \in \mathcal{A}_{n+1}^{2 *}$ there exists one and only one point $\widetilde{e}_{i}(G) \in \operatorname{int}(G)$, and one and only one point $\widetilde{e}_{k}(E)$, such that

$$
\widetilde{h}_{n+1}\left(\widetilde{e}_{i}(G)\right)=\widetilde{\psi}_{n+1} \circ f\left(\widetilde{e}_{i}(G)\right)=e_{k}(E) \in \operatorname{int}(E)
$$

Therefore

$$
\widetilde{e}_{k}(E) \in \operatorname{int}\left(E \cap \widetilde{h}_{n+1}(G)\right) \neq \emptyset
$$

Denote by

$$
S(G, E)
$$

the connected component of $E \cap \widetilde{h}_{n+1}(G)$ that contains the point $\widetilde{e}_{k}(E)$. Choose 2^{n+1} different points

$$
e_{i}(G, E) \in \operatorname{int}(S(G, E)), \quad i=1, \ldots, 2^{n+1}
$$

and a permutation θ of the finite set

$$
\begin{equation*}
L_{n+1}:=\left\{e_{i}(G, E): \quad(G, E) \in \mathcal{A}_{n+1}^{2^{*}}, \quad i=1, \ldots, 2^{n+1}\right\} \tag{13}
\end{equation*}
$$

such that for each fixed $(G, E, F) \in\left(\mathcal{A}_{n+1}\right)^{3^{*}}$ there exists a unique point $e_{i}(G, E)$, and a unique point $e_{k}(E, F)$, satisfying

$$
\theta\left(e_{i}(G, E)\right)=e_{k}(E, F)
$$

Then, for each $G \in \mathcal{A}_{n+1}$ construct a homeomorphism

$$
\psi_{n+1}: f(G) \rightarrow \widetilde{\psi}_{n+1}(f(G))=\widetilde{h}_{n+1}(G)
$$

such that

$$
\begin{gathered}
\left.\psi_{n+1}\right|_{\partial f(G)}=\left.\widetilde{\psi}_{n+1}\right|_{\partial f(G)} \\
\psi_{n+1}\left(f\left(e_{i}(G, E)\right)=\theta\left(e_{i}(G, E)\right)\right.
\end{gathered}
$$

$\forall E \in \mathcal{A}_{n+1}$ such that $G \xrightarrow{h} E, \quad \forall i=1, \ldots, 2^{n+1}$.
Finally, extend ψ_{n+1} to the whole box D^{m} by defining $\psi_{n+1}(x)=$ $\widetilde{\psi}_{n+1}(x) \quad \forall x \in D^{m} \backslash \bigcup_{G \in \mathcal{A}_{n+1}} f(G)$. In particular

$$
\left.\psi_{n+1}\right|_{\partial D^{m}}=\left.\widetilde{\psi}_{n+1}\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}} .
$$

Define

$$
h_{n+1}:=\psi_{n+1} \circ f .
$$

As said above, the property $h_{n+1}(G)=\widetilde{h}_{n+1}(G)$ for all the atoms $G \in$ $\bigcup_{j=0}^{n+1} \mathcal{A}_{j}$ implies that the boxes of the families $\mathcal{A}_{0}, \ldots, \mathcal{A}_{n+1}$ are also atoms up to generation $n+1$ for h_{n+1}. But now, they have the following additional property: there exists a one-to-one correspondence between the 3 -uples $(G, E, F) \in\left(\mathcal{A}_{n+1}\right)^{3^{*}}$ and the points of the set L_{n+1} of Equality (13), such that

$$
\begin{equation*}
e(G, E, F):=e_{i}(G, E) \in \operatorname{int}\left(S(G, E) \cap h_{n+1}^{-1}(S(E, F))\right) \tag{14}
\end{equation*}
$$

where $S(G, E)$ and $S(E, F)$ are fixed connected components of $E \cap$ $h_{n}(G)$ and of $F \cap h_{n}(E)$ respectively. Therefore, Assertion (10) holds for $n+1$, and the inductive construction is complete.

Besides, from the above construction we have:

$$
\begin{gathered}
\psi_{n+1}(x)=\widetilde{\psi}_{n+1}(x)=\psi_{n}(x) \text { if } x \notin \bigcup_{B, C} \psi_{n}^{-1}(R(B, C)) \subset \bigcup_{B} f(B) \\
\psi_{n+1} \circ \psi_{n}^{-1}(R(B, C))=\widetilde{\psi}_{n+1} \circ \psi_{n}^{-1}(R(B, C))= \\
\psi_{n} \circ \psi_{n}^{-1}(R(B, C))=R(B, C) \subset C
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
d\left(\psi_{n+1}^{-1}(x), \psi_{n}^{-1}(x)\right) \leq \max _{B \in \mathcal{A}_{n}} \operatorname{diam}(f(B))<\frac{1}{2^{n}} \quad \forall x \in D^{m} ; \\
d\left(\psi_{n+1}(x), \psi_{n}(x)\right) \leq \max _{C \in \mathcal{A}_{n}} \operatorname{diam}(C)<\frac{1}{2^{n}} \quad \forall x \in D^{m},
\end{gathered}
$$

$$
\begin{equation*}
\left\|\psi_{n+1}-\psi_{n}\right\|_{H o m}<\frac{1}{2^{n}} \tag{15}
\end{equation*}
$$

Step 3. The limit homeomorphisms

From Inequality (15) we deduce that the sequence ψ_{n} is Cauchy in $\operatorname{Hom}\left(D^{m}\right)$. Therefore, it converges to a homeomorphism ψ. Besides, by construction $\left.\psi_{n}\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}}$ for all $n \geq 1$. Then $\left.\psi\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}}$.

The convergence of ψ_{n} to ψ in $\operatorname{Hom}\left(D^{m}\right)$ implies that $h_{n}=\psi_{n} \circ f \in$ $R H o m\left(D^{m}\right)$ converges to $h=\psi \circ f \in \operatorname{RHom}\left(D^{m}\right)$ as $n \rightarrow+\infty$. Since $f\left(D^{m}\right) \subset \operatorname{int}\left(D^{m}\right)$ and $\psi \in \operatorname{Hom}\left(D^{m}\right)$, we deduce that $h\left(D^{m}\right) \subset$ $\operatorname{int}\left(D^{m}\right)$. Besides, by construction $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ are families of atoms up to generation n for h_{n}, and $h_{m}(x)=h_{n}(x)$ for all $x \in D^{m} \backslash \bigcup_{B \in \mathcal{A}_{n}} B$ and for all $m \geq n$. Since $\lim _{m} h_{m}=h$, the boxes of the family \mathcal{A}_{n} are n-atoms for h for all $n \geq 0$. Finally, from Inequality (9), the diameters of the n-atoms converge uniformly to zero as $n \rightarrow+\infty$. Thus h is a model according to Definition 2.6.

3. Infinite metric entropy of the models.

The purpose of this section is to prove the following Lemma.
Lemma 3.1. (Main Lemma) Let $\mathcal{H} \subset C^{0}\left(D^{m}\right)$ be the family of models with $m \geq 2$ (Definition 2.6). Then, for each $h \in \mathcal{H}$ there exists an ergodic, h-invariant measure ν supported on an h-invariant Cantor set $\Lambda \subset D^{m}$ such that $h_{\nu}(h)=+\infty$.
Remark 3.2. Lemma 3.1 holds, in particular, for $\mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right)$.
To prove Lemma 3.1 we need the following definition:
Definition 3.3. (The Λ-set)
Let $h \in \mathcal{H} \subset C^{0}\left(D^{m}\right)$ be a model map. Let $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{n}, \ldots$ be its sequence of families of atoms. The subset

$$
\Lambda:=\bigcap_{n \geq 0} \bigcup_{A \in \mathcal{A}_{n}} A
$$

of $\operatorname{int}\left(D^{m}\right)$ is called the Λ-set of the map h.
From Definitions 2.4 and 2.5, we know that, for each fixed $n \geq 0$, the set $\Lambda_{n}:=\bigcup_{A \in \mathcal{A}_{n}} A$, is nonempty, compact, and $\operatorname{int}\left(\Lambda_{n}\right) \supset \Lambda_{n+1}$. Therefore, Λ is also nonempty and compact. Besides, Λ_{n} is composed of a finite number of connected components $A \in \mathcal{A}_{n}$, which by Definition 2.6. satisfy $\lim _{n \rightarrow+\infty} \max _{A \in \mathcal{A}_{n}} \operatorname{diam} A=0$. Since $\Lambda:=\bigcap_{n \geq 0} \Lambda_{n}$, we deduce that the Λ-set is a Cantor set contained in $\operatorname{int}\left(D^{m}\right)$.
Lemma 3.4. (Dynamical properties of Λ)
a) The Λ-set of a model map $h \in \mathcal{H}$ is h-invariant, i.e., $h(\Lambda)=\Lambda$.
b) The map h restrict to the Λ-set is topologically transitive.

Proof. a) Let $x \in \Lambda$ and let $\left\{A_{n}(x)\right\}_{n \geq 0}$ the unique sequence of atoms such that $x \in A_{n}(x)$ and $A_{n}(x) \in \mathcal{A}_{n}$ for all $n \geq 0$. Then, $h(x) \in$ $h\left(A_{n}(x)\right)$ for all $n \geq 0$. From Definition 2.5, for all $n \geq 0$ there exists an atom $B_{n} \in \mathcal{A}_{n}$ such that $A_{n}(x) \xrightarrow{h} B_{n}$. Therefore $h\left(A_{n}(x)\right) \cap B_{n} \neq \emptyset$. Let d denote the Hausdorff distance between subsets of D^{m}, we deduce

$$
d\left(h(x), B_{n}\right) \leq \operatorname{diam}\left(h\left(A_{n}(x)\right)\right)+\operatorname{diam}\left(B_{n}\right)
$$

Besides, Equality (11) and the continuity of h imply

$$
\lim _{n \rightarrow+\infty} \max \left\{\operatorname{diam}\left(h\left(A_{n}(x)\right)\right), \operatorname{diam}\left(B_{n}\right)\right\}=0
$$

Then, for all $\epsilon>0$ there exists $n_{0} \geq 0$ such that $d\left(h(x), B_{n}\right)<\epsilon$ for some atom $B_{n} \in \mathcal{A}_{n}$ for all $n \geq n_{0}$. Since any atom of any generation intersects Λ, we deduce that $d(h(x), \Lambda)<\epsilon \forall \epsilon>0$. Since Λ is compact, this implies $h(x) \in \Lambda$. We have proved that $h(\Lambda) \subset \Lambda$.

Now, let us prove the other inclusion. Let $y \in \Lambda$ and let $\left\{B_{n}(y)\right\}_{n \geq 0}$ the unique sequence of atoms such that $y=h(x) \in B_{n}(y)$ and $B_{n}(y) \in$ \mathcal{A}_{n} for all $n \geq 0$. From Definition 2.5, for all $n \geq 0$ there exists an atom $A_{n} \in \mathcal{A}_{n}$ such that $A_{n} \xrightarrow{h} B_{n}(y)$. Therefore $h\left(A_{n}\right) \cap B_{n}(y) \neq \emptyset$. We deduce that, for all $n \geq 0$, there exists a point $x_{n} \in A_{n} \in \mathcal{A}_{n}$ such that $h\left(x_{n}\right) \in B_{n}(y)$. Since any atom A_{n} contains points of Λ, we obtain

$$
d\left(x_{n}, \Lambda\right) \leq \operatorname{diam}\left(A_{n}\right) \geq 0 \text { and } d\left(h\left(x_{n}\right), y\right) \leq \operatorname{diam}\left(B_{n}(y)\right) \forall n \geq 0
$$

Let x be the limit of a convergent subsequence of $\left\{x_{n}\right\}_{n \geq 0}$, applying Equality (1) and the continuity of h, we deduce that $d(x, \Lambda)=0$ and $d(h(x), y)=0$. This means that $y=h(x)$ and $x \in \Lambda$. We have proved that $y \in h(\Lambda)$ for all $y \in \Lambda$; namely $\Lambda=h(\Lambda)$, as wanted.
b) Since the intersection of Λ with the atoms of all the generations generates its topology, to prove that Λ is h-transitive it is enough to prove that for any two atoms A_{1}, A_{2} there exists an $l \geq 1$ such that $h^{l}\left(A_{1} \cap \Lambda\right) \cap\left(A_{2} \cap \Lambda\right) \neq \emptyset$. It is not restrictive to assume that A_{1} and A_{2} are atoms of the same generation n_{0} (if not, take n_{0} equal to the largest of both generation and substitute A_{i} by an atom of generation n_{0} contained in A_{i}). Applying Lemma 2.9 there exists $l \geq 1$ and an l-path from A_{1} to A_{2}. So, from Lemma 2.10 , for all $m \geq n_{0}$ there exists atoms $B_{m, 1}, B_{m, 2}$ and an l-path from $B_{m, 1}$ to $B_{m, 2}$ (with constant $l \geq 1$) such that

$$
B_{n_{0}, i}=A_{i}, \quad B_{m+1, i} \subset B_{m, i} \forall m \geq n_{0}, \quad i=1,2
$$

Construct the following two points x_{1} and x_{2} :

$$
\left\{x_{i}\right\}=\bigcap_{n \geq n_{0}} \bigcup_{m \geq n} B_{m, i}, \quad i=1,2
$$

By Definition 3.3, $x_{i} \in A_{i} \cap \Lambda$. So, to finish the proof of part b) it is enough to prove that $h^{l}\left(x_{1}\right)=x_{2}$.

Fix $l \geq 1$. Since h is uniformly continuous, for any $\epsilon>0$ there exists $\delta>0$ such that if $\left(y_{0}, y_{1}, \ldots, y_{l}\right) \in\left(D^{m}\right)^{l}$ satisfies $d\left(h\left(y_{i}\right), y_{i+1}\right)<\delta$ for $0 \leq i \leq l$, then the points y_{0} and y_{l} satisfy $d\left(f^{l}\left(y_{0}\right), y_{l}\right)<\epsilon$. We choose δ small enough so that $d\left(h^{l}(x), h^{l}(y)\right)<\epsilon$ if $d(x, y)<\delta$.

From Equality (1), there exists $m \geq n_{0}$ such that $\operatorname{diam}\left(B_{m, i}\right)<\epsilon$. Since there exists an l-path from $B_{m, 1}$ to $B_{m, 2}$, there exists a $\left(y_{0}, \ldots, y_{l}\right)$ as in the previous paragraph with $y_{0} \in B_{m, 1}$ and $y_{l} \in B_{m, 2}$. Thus

$$
\begin{gathered}
d\left(h^{l}\left(x_{1}\right), x_{2}\right) \leq d\left(h^{l}\left(x_{1}\right), h^{l}\left(y_{0}\right)\right)+d\left(h^{l}\left(y_{0}\right), y_{l}\right)+d\left(y_{l}, x_{1}\right) \\
<\operatorname{diam}\left(h^{l}\left(B_{m, 1}\right)\right)+\epsilon+\operatorname{diam}\left(B_{m, 2}\right)<3 \epsilon .
\end{gathered}
$$

Since $\epsilon>0$ is arbitrary, we obtain $h^{l}\left(x_{1}\right)=x_{2}$, as wanted.
Lemma 3.5. (Intersection of Λ with l-paths) Fix $l, n \geq 1$. Then
a) For any $G \in \mathcal{A}_{n+l}$, there exists a unique $(l+1)$-path $\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ of n-atoms such that $G \cap \Lambda \subset \bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)$.
b) For any $(l+1)$-path $\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ of n-atoms,

$$
\begin{equation*}
\Lambda \cap \bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)=\bigcup_{G \in \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)}^{\circ} G \cap \Lambda, \tag{16}
\end{equation*}
$$

where $\mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right):=\left\{G \in \mathcal{A}_{n+l}: G \cap \Lambda \subset \bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)\right\}$.
c) For any $(l+1)$-path $\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ of n-atoms,

$$
\# \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)=\frac{1}{2^{n l}} \cdot \frac{\# \mathcal{A}_{n+l}}{\# \mathcal{A}_{n}} .
$$

Proof. a) From Definition 2.5, for any atom G of generation $n+l$ there exist two unique atoms B, C of generation $n+l-1$ such that $B \rightarrow_{h} C$, $G \subset B$ and $G \xrightarrow{h} E$ for all $E \in \Omega_{n+l}(B, C)$. Besides

$$
\begin{equation*}
h(G) \cap \operatorname{int}(F) \neq \emptyset \quad \forall F \in \mathcal{A}_{n+l} \backslash \Omega_{n+l}(B, C) \tag{17}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
h(G \cap \Lambda) \subset \operatorname{int}(C) . \tag{18}
\end{equation*}
$$

In fact, since Λ is h-invariant, for any $x \in G \cap \Lambda$, we have $h(x) \in$ $h(G) \cap \Lambda$. Therefore $h(x)$ is in the interior of some atom $E(x)$ of generation $n+l$ (see Definition 2.5). From (17), $E(x) \in \Omega_{n+l}(B, C)$. Thus $E(x) \subset \operatorname{int}(C)$ and $h(x) \in \operatorname{int}(C)$ for all $x \in G \cap \Lambda$ proving (18).

So, there exists $C_{1} \in \mathcal{A}_{n+l-1}$ such that $h(G \cap \Lambda) \subset \operatorname{int}\left(C_{1}\right) \cap \Lambda$. Applying the same assertion to C_{1} instead of G, we deduce that there
exists $C_{2} \in \mathcal{A}_{n+l-2}$ such that $h\left(C_{1} \cap \Lambda\right) \subset \operatorname{int}\left(C_{2}\right) \cap \Lambda$. So, by induction, we construct atoms

$$
\begin{gathered}
C_{1}, C_{2}, \ldots, C_{l} \quad \text { such that } \quad C_{j} \in \mathcal{A}_{n+l-j} \text { and } \\
h^{j}(G \cap \Lambda) \subset \operatorname{int}\left(C_{j}\right) \cap \Lambda \quad \forall j=1, \ldots, l .
\end{gathered}
$$

Since any atom of generation larger than n is contained in a unique atom of generation n, there exists $A_{0}, A_{1}, \ldots, A_{l} \in \mathcal{A}_{n}$ such that $A_{0} \supset$ G and $A_{i} \supset C_{i} \forall i=1, \ldots, l$. We obtain

$$
h^{j}(G \cap \Lambda) \subset \operatorname{int}\left(A_{j}\right) \quad \forall j=0,1, \ldots, l .
$$

$\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ is an $(l+1)$-path since $\emptyset \neq h^{j}(G \cap \Lambda) \subset h\left(A_{j-1}\right) \cap$ $\operatorname{int}\left(A_{j}\right)$; hence $A_{j-1} \rightarrow h A_{j}$ for all $j=1, \ldots, l$. Besides, $G \cap \Lambda \subset$ $h^{-j}\left(A_{j}\right) \quad \forall j=0,1, \ldots, l$, proving a).
b) For the $(l+1)$-path $\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ of n-atoms, construct $\widetilde{\mathcal{F}}_{n, l}\left(\left\{A_{j}\right\}\right):=$ $\left\{G \in \mathcal{A}_{n+l}: G \cap \Lambda \cap\left(\cap_{j=0}^{l} h^{-j}\left(A_{j}\right)\right) \neq \emptyset\right\}$. From the definitions of the families $\mathcal{F}_{n, l}$ and $\widetilde{\mathcal{F}}_{n, l}$, and taking into account that Λ is contained in the union of $(n+1)$-atoms, we obtain:
$\operatorname{int}\left(\bigcup_{G \in \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)} G \cap \Lambda\right) \subset \Lambda \cap\left(\bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)\right) \subset \operatorname{int}\left(\bigcup_{G \in \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)} G \cap \Lambda\right)$.
Therefore, to prove Equality (16) it is enough to prove that $\widetilde{\mathcal{F}}_{n, l}\left(\left\{A_{j}\right\}\right)=$ $\mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)$. Trivially $\left.\widetilde{\mathcal{F}}_{n, l}\left(\widetilde{\mathcal{F}}_{j}\right\}\right) \supset \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)$. Let us prove the converse inclusion. If $G \in \widetilde{\mathcal{F}}_{n, l}\left(\left\{A_{j}\right\}\right)$, then by part a) there exists an $(l+1)$-path $\left\{\widetilde{A}_{j}\right\}$ of n-atoms such that $G \subset \bigcap_{j=0}^{l} h^{-j}\left(\widetilde{A}_{j}\right)$. If the two paths $\left\{\widetilde{A}_{j}\right\}$ and $\left\{A_{j}\right\}$ were different, then the sets $\bigcap_{j=0}^{l} h^{-j}\left(\widetilde{A}_{j}\right)$ and $\bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)$ would be disjoint. But from the condition, $G \in \widetilde{F}_{n, l}$ we know that G intersects the set $\bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)$. We deduce that $\left\{\widetilde{A}_{j}\right\}=\left\{A_{j}\right\}$, hence $G \subset \bigcap_{j=0}^{l} h^{-j}\left(A_{j}\right)$ and $G \in \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)$, as wanted. c) From Assertion a), and taking into account that for two different $(l+1)$-paths of n-atoms, the respective families $\mathcal{F}_{n, l}$ of $(n+1)$-atoms are disjoint, we obtain:

$$
\begin{equation*}
\mathcal{A}_{n+l}=\operatorname{int}\left(\bigcup_{\left\{A_{j}\right\} \in \mathcal{A}_{n}^{(l+1)^{*}}} \mathcal{F}_{n, 1}\left(\left\{A_{j}\right\}\right)\right), \tag{19}
\end{equation*}
$$

where $\mathcal{A}_{n}^{(l+1)^{*}}$ denotes the set of all the $(l+1)$-paths of n-atoms. From Definition 2.5, the number of atoms of each generation larger than n that are contained in each $A_{j} \in \mathcal{A}_{n}$, and also the number of atoms $G \in \mathcal{A}_{n+j}$ such that $G \rightarrow A_{j}$, are constants that depend only on the generations but not on which particular atoms are chosen. Therefore,
there exists a constant $k_{n, l}$ such that $\# \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)=k_{n, l}$ for all the $(l+1)$-chains $\left\{A_{j}\right\}$ of n-atoms. So, from Equality (19) we obtain:

$$
\# \mathcal{A}_{n+l}=\left(\# \mathcal{A}_{n}^{(l+1)^{*}}\right) \cdot\left(\# \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)\right) .
$$

Therefore, to prove Assertion c) it is enough to prove that

$$
\begin{equation*}
\# \mathcal{A}_{n}^{(l+1)^{*}}=2^{n l} \cdot\left(\# \mathcal{A}_{n}\right) \tag{20}
\end{equation*}
$$

Each $(l+1)$-path $\left(A_{0}, A_{1}, \ldots, A_{l}\right)$ of n-atoms is determined by a free choice of the atom $A_{0} \in \mathcal{A}_{n}$, followed by the choice of the atoms $A_{j} \in$ \mathcal{A}_{n} such that $A_{j} \rightarrow_{h} A_{j-1}$ for all $j=1, \ldots, l$. From Definition 2.5, we know that for any fixed $A \in \mathcal{A}_{n}$ the number of atoms $B \in \mathcal{A}_{n}$ such that $B \xrightarrow{h} A$ is 2^{n}. This implies Equality 20 , as wanted.
Proof of Lemma 3.1. Consider the Λ-set of h, according to Definition 3.3 it is a Cantor set and the σ-algebra of its Borel subsets is generated by the family of its intersection with the atoms of all the generations. In this family define the additive pre-measure given by

$$
\nu^{*}(A \cap \Lambda):=\frac{1}{\# \mathcal{A}_{n}} \quad \forall A \in \mathcal{A}_{n} \quad \forall n \geq 0
$$

Since ν^{*} is a pre-measure defined in a family of sets that generates the Borel σ-algebra of Λ, there exists a unique Borel probability measure ν supported on Λ such that

$$
\nu(A \cap \Lambda):=\frac{1}{\# \mathcal{A}_{n}} \quad \forall A \in \mathcal{A}_{n} \quad \forall n \geq 0
$$

We need to prove that ν is h-invariant, ergodic and that its metric entropy is infinite. Fix $m>1$, the proof is similar in the 1-dimensional case.

To see that ν is h-invariant, it is enough to prove that

$$
\begin{equation*}
\nu(C \cap \Lambda)=\nu\left(h^{-1}(C \cap \Lambda)\right) \quad \forall C \in \mathcal{A}_{n} \quad \forall n \geq 0 \tag{21}
\end{equation*}
$$

In fact, from Definition 2.5, taking into account that Λ is invariant and that any point in Λ belongs to an atom of generation $n+1$, we obtain:

$$
\begin{align*}
h^{-1}(C \cap \Lambda) & =\operatorname{int}\left(\bigcup_{\substack{(D, B) \in \mathcal{A}_{n}^{2^{*}} \\
B \rightarrow}} \operatorname{int}\left(\bigcup_{G \in \Gamma_{n+1}(D, B, C)}(G \cap \Lambda)\right)\right) ; \\
\nu\left(h^{-1}(C \cap \Lambda)\right) & =\sum_{\substack{B \in \mathcal{A}_{n} \\
B \xrightarrow{h} C}} \sum_{\substack{D \in \mathcal{A}_{n} \\
D \xrightarrow{h} B}} \sum_{G \in \Gamma_{n+1}(B, C, D)} \nu(G \cap \Lambda) \\
& =N_{C} \cdot N_{B} \cdot\left(\# \Gamma_{n+1}(B, C, D)\right) \cdot \frac{1}{\# \mathcal{A}_{n+1}}, \tag{22}
\end{align*}
$$

where $\left.N_{X}:=\#\left\{Y \in \mathcal{A}_{n}: Y \xrightarrow{h} X\right\}\right)=2^{n}$ for all $X \in \mathcal{A}_{n}$. Since $\left.\# \Gamma_{n+1}(B, C, D)\right)=2$ and $\# \mathcal{A}_{n+1}=2^{(n+1)^{2}}$, we conclude

$$
\nu\left(h^{-1}(C \cap \Lambda)\right)=2^{n} \cdot 2^{n} \cdot 2 \cdot \frac{1}{2^{(n+1)^{2}}}=\frac{1}{2^{n^{2}}}=\frac{1}{\# \mathcal{A}_{n}}=\nu(C \cap \Lambda),
$$

proving Equality (21) as wanted.
We turn to the ergodicity of ν. We assert that if E is a Borel set such that $\nu(E)>0$, then there exists $n \geq 0$ and an atom $A \in \mathcal{A}_{n}$ such that $A \cap \Lambda \subset E$. Assume by contradiction that every atom of every generation intersects $\Lambda \backslash E$. Then, for any sequence of atoms $\left\{A_{n}\right\}_{n \geq 0}$ such that $A_{n} \in \mathcal{A}_{n}$ and $A_{n+1} \subset A_{n}$ for all $n \geq 0$, the point $\bigcap_{n \geq 0} A_{n}$ belongs to $\Lambda \backslash E$. But from Definition 3.3, the union of all such intersections is Λ. We deduce that $\Lambda \subset \Lambda \backslash E$. In other words, $E \cap \Lambda=\emptyset$. Since ν is supported on Λ, we conclude that $\nu(E)=0$, contradicting the hypothesis and proving the assertion.

Now consider an h-invariant Borel set E, i.e., $h^{-1}(E)=E$, such that $\nu(E)>0$. We must prove that $\nu(E)=1$. From the previous assertion, there exists an atom B such that $B \cap \Lambda \subset E$. Therefore

$$
h^{-l}(B \cap \Lambda) \subset h^{-l}(E)=E \quad \forall l \geq 1
$$

Since h is topologically transitive (Lemma 3.4 b)), for any atom A of any generation, there exists $l \geq 1$ such that $h^{-l}(B \cap \Lambda) \cap(A \cap \Lambda) \neq \emptyset$. Then $E \cap(A \cap \Lambda) \neq \emptyset$ for all $A \in \mathcal{A}_{n}$ and for all $n \geq 0$. Again applying the assertion, we conclude that the complement of E has zero ν-measure, and thus ν is ergodic.

Now we turn to the entropy estimate. Fix a natural number $n \geq 1$ and consider the partition $\{\mathcal{A}\}_{n}$ of Λ composed by the n-atoms intersected with Λ. By definition of metric entropy

$$
\begin{gather*}
h_{\nu}(h):=\sup _{\mathcal{P}} h(\mathcal{P}, \nu) \geq h\left(\mathcal{A}_{n}, \nu\right), \text { where } \tag{23}\\
h\left(\mathcal{A}_{n}, \nu\right):=\lim _{l \rightarrow+\infty} \frac{1}{l} H\left(\bigvee_{j=0}^{l}\left(h^{-j} \mathcal{A}_{n}\right), \nu\right), \tag{24}\\
\mathcal{Q}_{l}:=\bigvee_{j=0}^{l} h^{-j} \mathcal{A}_{n}:=\left\{\bigcap_{j=0}^{l} h^{-j} A_{j} \cap \Lambda \neq \emptyset: \quad A_{j} \in \mathcal{A}_{n}\right\}, \\
H\left(\mathcal{Q}_{l}\right) \tag{25}
\end{gather*}:=-\sum_{X \in \mathcal{Q}_{j}} \nu(X) \log \nu(X) . ~ \$
$$

From part b) of Lemma 3.5, for any nonempty piece

$$
\begin{aligned}
X:= & \Lambda \cap\left(\bigcap_{j=0}^{l} h^{-j} A_{j}\right) \in \mathcal{Q}_{j} \text {, we have } \\
& \nu(X)=\nu\left(\bigcap_{j=0}^{l} h^{-j} A_{j} \cap \Lambda\right)=\sum_{G \in \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)} \nu(G \cap \Lambda) .
\end{aligned}
$$

Since G is an atom of generation $n+l, \nu(G \cap \Lambda)=1 / \# \mathcal{A}_{n+l}$. So, applying part c) of Lemma 3.5, we obtain

$$
\nu(X)=\frac{\# \mathcal{F}_{n, l}\left(\left\{A_{j}\right\}\right)}{\# \mathcal{A}_{n+l}}=\frac{1}{2^{n l} \cdot \# \mathcal{A}_{n}}
$$

Substituting in Equality (25), $H\left(\mathcal{Q}_{l}\right)=\log \left(\# \mathcal{A}_{n}\right)+n l \cdot \log 2$. Finally, substituting in Equalities (23) and (24), we conclude
$h\left(\mathcal{A}_{n}, \nu\right):=\lim _{l \rightarrow+\infty}(1 / l) H\left(\mathcal{Q}_{l}, \nu\right)=n \log 2$; therefore
$h_{\nu}(h) \geq h\left(\mathcal{A}_{n}, \nu\right)=n \log 2$, for all $n \geq 1$; and $h_{\nu}(h)=+\infty$.

4. Periodic Shrinking Boxes

In this section we will prove Theorems 1 and 3. The proofs are based on the properties of the models proved in the previous sections, and on the existence of the periodic shrinking boxes which we construct here. Until further notice $m \geq 1$.

Definition 4.1. (Periodic shrinking box) Let $f \in C^{0}(M)$ and $K \subset$ M be a box. We call K periodic shrinking with period $p \geq 1$ for f, if $K, f(K), f^{2}(K), \ldots, f^{p-1}(K)$ are pairwise disjoint, and $f^{p}(K) \subset$ $\operatorname{int}(K)$. If so, we call $\left.f^{p}\right|_{K}: K \rightarrow \operatorname{int}(K)$ the return map.

Lemma 4.2. For any $\delta>0$, there exists an open and dense set of maps $f \in C^{0}(M)$ that have a periodic shrinking box K with $\operatorname{diam}(K)<\delta$.

Proof. According to Definition 4.1, the same periodic shrinking box K for f is also a periodic shrinking box with the same period for all $g \in C^{0}(M)$ near enough f, proving the openness assertion.

We turn to the denseness assertion. Let $f \in C^{0}(M)$ and $\epsilon>0$. We will construct $g \in C^{0}(M)$ and a periodic shrinking box K for g with $\operatorname{diam}(K)<\delta$, such that $\|g-f\|_{C^{0}}<\epsilon$. We suppose $\delta>0$ is to be smaller than the ϵ-modulus of continuity of f.

By the Krylov-Bogolyubov theorem invariant measures exist, and thus by the Poincaré Lemma, there exists a recurrent point $x_{0} \in M$ for f. First assume that $x_{0} \notin \partial M$. So, there exists a box $\bar{B} \subset M$ with $\operatorname{diam}(\bar{B})<\delta$ such that $x_{0} \in B=\operatorname{int}(\bar{B})$. Since x_{0} is a recurrent point, there exists a minimum natural number $p \geq 1$ such that $f^{p}\left(x_{0}\right) \in B$. Taking \bar{B} slightly smaller if necessary, we can assume that $f^{j}\left(x_{0}\right) \notin \bar{B}$ for all $j=1,2, \ldots, p-1$. So, there exists a small compact box $\bar{U} \subset B$ as in Figure 3 , such that $x_{0} \in U=\operatorname{int}(\bar{U})$, the sets $\bar{B}, \bar{U}, f(\bar{U}), \ldots, f^{p-1}(\bar{U})$ are pairwise disjoint, and $f^{p}(\bar{U}) \subset B$.

Consider the homeomorphism $\phi: \bar{B} \rightarrow[0,1]^{m}$ defining the box \bar{B}. We can suppose that \bar{U} is homotetic to \bar{B} in the sense that ϕ maps \bar{U} to $[a, b]^{m} \subset[0,1]^{m}$. Since $\bar{U}, f^{p}(\bar{U}) \subset \operatorname{int}(\bar{B})$, there exists a box \bar{K} such

Figure 3. Construction of g near f with a periodic shrinking box K for g.
that $\bar{U}, f^{p}(\bar{U}) \subset \operatorname{int}(\bar{K}) \subset \bar{K} \subset \operatorname{int}(\bar{B})$. In the same sense we choose \bar{K} to be homotetic to \bar{B}. Therefore, there exists a homeomorphism $\psi: \bar{B} \rightarrow \bar{B}$ such that $\psi(x)=x$ for all $x \in \partial \bar{B}$, and $\psi(K)=\bar{U}$.

Finally, we construct $g \in C^{0}(M)$ as follows:

$$
g(x):=f(x) \quad \forall x \notin \bar{B}, \quad g(x)=f \circ \psi(x) \quad \forall x \in \bar{B} .
$$

By construction, K is a periodic shrinking box of g, by the choice of δ we have $\|g-f\|<\epsilon$.

Now, let us study the case for which M is a manifold with boundary and all the recurrent points of f belong to ∂M. Choose one of such recurrent points $x_{0} \in \partial M$. For any $\delta>0$, there exists a compact box $\bar{B} \subset M$, with $\operatorname{diam}(\bar{B}) \leq \delta$ such that $x_{0} \in \partial M \cap \bar{B}$. Since x_{0} is recurrent, there exists a smallest natural number $p \geq 1$ such that $f^{p}\left(x_{0}\right) \in \bar{B}$. But $f^{p}\left(x_{0}\right)$ is also recurrent. So, $f^{p}\left(x_{0}\right) \in \partial M \cap \bar{B}$. The previous proof does not work as is. To overcome the problem, we choose a new point $\widetilde{x}_{0} \neq x_{0}$, near enough x_{0}, such that $\widetilde{x}_{0} \in \operatorname{int}(\bar{B}) \backslash \partial M$ and $f^{p}\left(\widetilde{x}_{0}\right) \in \bar{B}$. Slightly perturbing f if necessary, we can assume that the restriction of f to a small neighborhood of \widetilde{x}_{0} is a local homeomorphism onto its image. Hence, $f^{p}\left(\widetilde{x}_{0}\right) \in \operatorname{int}(\bar{B}) \backslash \partial M$. Finally. we repeat the same construction of g and K that we did at the beginning of this proof, but replacing the recurrent point x_{0} by \widetilde{x}_{0}.

Remark 4.3. Note that to obtain the dense property in the proof of Lemma 4.2, we only need to perturb the map f in the interior of the initial box \bar{B} with diameter smaller than δ.

Remark 4.4. We can suppose that p is arbitrarily large by choosing \bar{B} with sufficiently small diameter.

The following lemma is the homeomorphism version of Lemma 4.2. It works for any finite dimension m, including $m=1$.
Lemma 4.5. For any $\delta>0$, there exists an open and dense set of maps $f \in \operatorname{Hom}(M)$ that have a periodic shrinking box K with $\operatorname{diam}(K)<\delta$.

Proof. The proof of Lemma 4.2 also works in the case that $f \in \operatorname{Hom}(M)$: in fact, the ϵ-perturbed map g constructed there is a homeomorphism, and to obtain $\|g-f\|_{\operatorname{Hom}(M)}<\epsilon$ it is enough to reduce $\delta>0$ to be smaller than the ϵ-continuity modulus of f and f^{-1}.

Remark 4.6. In the proof of Lemmas 4.2 and 4.5, if the starting recurrent point x_{0} were a periodic point of period p, then the periodic shrinking box K so constructed would contain x_{0} in its interior and have the same period p.

Remark 4.7. For further uses, let us prove that, even if typically a $\operatorname{map} f \in C^{0}(M)$ is not a homeomorphism, we can construct densely in $C^{0}(M)$ a periodic shrinking box K such that the return map $\left.f^{p}\right|_{K}$ is a homeomorphism onto its image.
Proof. Repeat the beginning of the proof of the density property of Lemma 4.2, up to the construction of the points $x_{0}, f\left(x_{0}\right), \ldots, f^{p}\left(x_{0}\right)$ such that $x_{0}, f^{p}\left(x_{0}\right) \in B=\operatorname{int}(\bar{B})$ and $f^{j}\left(x_{0}\right) \notin \bar{B}$. Now, slightly perturb f if necessary, only inside very small open neighborhoods $W_{0}, W_{1}, \ldots, W_{p-1}$ of the points $x_{0}, f\left(x_{0}\right), \ldots, f^{p-1}\left(x_{0}\right)$ respectively, so that $\left.f\right|_{\bar{W}_{i}}$ is a homeomorphism onto its image for all $i=0,1, \ldots, p-1$. Finally, construct the box \bar{U} as in Figure 3, but small enough so besides $f^{j}(\bar{U}) \subset W_{j}$ for all $j=0,1, \ldots, p-1$.
Lemma 4.8. Let $\delta>0$. A typical map $f \in C^{0}(M)$ has a periodic shrinking box K with $\operatorname{diam}(K)<\delta$ and such that the return map $\left.f^{p}\right|_{K}$ is topologically conjugated to a model map $h \in \mathcal{H}$ (recall Definition 2.6).
Proof. Let $K \subset M$ be a periodic shrinking box for f. Fix a homeomorphism $\phi: K \rightarrow D^{m}$. The notation $\left.f^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H}$, means that $\left.f^{p}\right|_{K}=\phi^{-1} \circ h \circ \phi$ with $h \in \mathcal{H}$.

To prove the G_{δ} property, assume that $f \in C^{0}(M)$ has a periodic shrinking box K with $\operatorname{diam}(K)<\delta$, such that $\left.f^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H}$. From Definition 4.1, the same box K is also periodic shrinking with period p for all $g \in \mathcal{N}$, where $\mathcal{N} \subset C^{0}(M)$ is an open neighborhood of f. From Lemma 2.11, \mathcal{H} is a G_{δ}-set in $C^{0}\left(D^{m}\right)$, i.e., it is the countable intersection of open families $\mathcal{H}_{n} \subset C^{0}\left(D^{m}\right)$. Thus, $\left.f^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H}_{n}$ for

Figure 4. Perturbation g of f such that $\left.g^{p}\right|_{K}=h$.
all $n \geq 1$. Since the restriction to K of a continuous map f, and the composition of continuous maps, are continuous operators in $C^{0}(M)$, we deduce that there exists a sequence of open sets $\mathcal{V}_{n} \in C^{0}(M)$ such that

$$
\begin{equation*}
\left.g^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H} \text { if } g \in \bigcap_{n \geq 1}^{+\infty}\left(\mathcal{V}_{n} \cap \mathcal{N}\right) \subset C^{0}(M) . \tag{26}
\end{equation*}
$$

In other words, the set of maps $g \in C^{0}(M)$ that have periodic shrinking box K with $\operatorname{diam}(K)<\delta$, such that the return map $\left.g^{p}\right|_{K}$ coincides, up to a conjugation, with a model map h, contains a G_{δ}-set in $C^{0}(M)$.

To show the denseness fix $f \in C^{0}(M)$ and $\epsilon>0$. Applying Lemma 4.2 and Remark 4.7, it is not restrictive to assume that f has a periodic shrinking box K with $\operatorname{diam}(K)<\min \{\delta, \epsilon\}$, such that $\left.f^{p}\right|_{K}$ is a homeomorphism onto its image. We will construct $g \in C^{0}(M)$ to be ϵ-near f and such that $\left.g^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H}$.

By Remark 4.4 we can assume that $p \geq 2$. From Definition 4.1 we know that $f^{p-1}(K) \cap K=\emptyset$; thus there exists a box \bar{W} such that $f^{p-1}(K) \subset W:=\operatorname{int}(\bar{W})$ and $\bar{W} \cap K=\emptyset$ (Figure 4). Reducing δ if necessary, we can take \bar{W} with an arbitrarily small diameter.

To construct $g \in C^{0}(M)$ (see Figure 4) let $g(x):=f(x) \forall x \notin W$ and

$$
g(x):=\phi^{-1} \circ h \circ \phi \circ\left(\left.f^{p}\right|_{K}\right)^{-1} \circ f(x) \forall x \in f^{p-1}(K) .
$$

This defines a continuous map $g: f^{p-1}(K) \cup(M \backslash W) \rightarrow M$ such that $|g(x)-f(x)|<\operatorname{diam}(K)<\epsilon$ for all $x \in f^{p-1}(K) \subset W$ and $g(x)=f(x)$ for all $x \in M \backslash W$. Applying the Tietze Extension Theorem, there exists
a continuous extension of g to the whole compact box \bar{W}, hence to M, such that $\|g-f\|_{C^{0}}<\epsilon$. Finally, by construction we obtain
$\left.g^{p}\right|_{K}=\left.g\right|_{f^{p-1}(K)} \circ f^{p-1}(K)=\phi^{-1} \circ h \circ \phi \circ\left(\left.f^{p}\right|_{K}\right)^{-1} \circ f \circ f^{p-1}(K)={ }_{\phi} h$, ending the proof of Lemma 4.8.

Lemma 4.9. Assume that $m=\operatorname{dim}(M) \geq 2$ and let $\delta>0$. A typical homeomorphism $f \in \operatorname{Hom}(M)$ has a periodic shrinking box K with $\operatorname{diam}(K)<\delta$, such that the return map $\left.f^{p}\right|_{K}$ is topologically conjugated to a model homeomorphism $h \in \mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right)$.

Proof. We repeat the proof of the G_{δ}-set property of Lemma 4.8, putting $\mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right)$ instead of \mathcal{H}, and $\operatorname{Hom}(M)$ instead of $C^{0}(M)$.

To show the denseness fix $f \in \operatorname{Hom}(M)$ and $\epsilon>0$. Let $\delta \in(0, \epsilon)$ be smaller the the ϵ-modulus of continuity of f and f^{-1}, and consider a periodic shrinking box K with $\operatorname{diam}(K)<\delta$ (Lemma 4.5). Fix a homeomorphism $\phi: K \rightarrow D^{m}$. We will construct $g \in \operatorname{Hom}(M)$ to be ϵ-near f in $\operatorname{Hom}(M)$, with $\left.g^{p}\right|_{K}={ }_{\phi} h \in \mathcal{H} \cap R H o m\left(D^{m}\right)$.

From Definition 4.1 we know that the boxes $K, f(K), \ldots, f^{p-1}(K)$ are pairwise disjoint and that $f^{p}(K) \subset \operatorname{int}(K)$. Denote $\bar{W}:=f^{-1}(K)$. Since f is a homeomorphism, we deduce that \bar{W} is a box as in Figure 4. such that $\bar{W} \cap f^{j}(K)=\emptyset$ for all $j=0,1, \ldots, p-2$ if $p \geq 2$, and $f^{p-1}(K) \subset W:=\operatorname{int}(\bar{W})$. Since $\operatorname{diam}(K)<\delta$ we have $\operatorname{diam}(\bar{W})<\epsilon$.

Consider $\left.\phi \circ f^{p}\right|_{K} \circ \phi^{-1} \in R \operatorname{Hom}\left(D^{m}\right)$. Applying part b) of Lemma 2.11, there exists a homeomorphism $\psi: D^{m} \rightarrow D^{m}$ such that

$$
\left.\psi\right|_{\partial D^{m}}=\left.\mathrm{id}\right|_{\partial D^{m}},\left.\quad \psi \circ \phi \circ f^{p}\right|_{K} \circ \phi^{-1}=h \in \mathcal{H} \cap \operatorname{RHom}\left(D^{m}\right) .
$$

So, we can construct $g \in \operatorname{Hom}(M)$ such that $g(x):=f(x)$ for all $x \notin W$, and $g(x):=\phi^{-1} \circ \psi \circ \phi \circ f(x)$ for all $x \in W$. Since $\left.\psi\right|_{\partial D^{m}}$ is the identity map, we obtain $\left.g\right|_{\partial W}=\left.f\right|_{\partial W}$. Thus, the above equalities define a continuous map $g: M \rightarrow M$. Besides g is invertible because $\left.g\right|_{W}: W \rightarrow K$ is a composition of homeomorphisms, and $\left.g\right|_{M \backslash W}=$ $\left.f\right|_{M \backslash W}: M \backslash W \rightarrow M \backslash K$ is also a homeomorphism. So, $g \in \operatorname{Hom}(M)$. Moreover, by construction we have $|g(x)-f(x)|<\operatorname{diam}(K)<\epsilon$ for all $x \in W$, and $g(x)=f(x)$ for all $x \notin W$. Also the inverse maps satisfy $\left|g^{-1}(x)-f^{-1}(x)\right|<\operatorname{diam}\left(f^{-1}(K)\right)=\operatorname{diam}(\bar{W})<\epsilon$ for all $x \in K$, and $g^{-1}(x)=f^{-1}(x)$ for all $x \notin K$. Therefore $\|g-f\|_{H o m}<\epsilon$.

Finally, let us check that $\left.g^{p}\right|_{K}$ is topologically conjugated to h :

$$
\begin{aligned}
& \left.g^{p}\right|_{K}=\left.\left.g\right|_{f^{p-1}(K)} \circ f^{p-1}\right|_{K}=\left.\left.g\right|_{W} \circ f^{p-1}\right|_{K}= \\
& \left.\quad \phi^{-1} \circ \psi \circ \phi \circ f \circ f^{p-1}\right|_{K}= \\
& \phi^{-1} \circ\left(\left.\psi \circ \phi \circ f^{p}\right|_{K} \circ \phi^{-1}\right) \circ \phi=\phi^{-1} \circ h \circ \phi,
\end{aligned}
$$

ending the proof of Lemma 4.9.

Remark 4.10. In the proof of the dense property in Lemmas 4.8 and 4.9, once a periodic shrinking box K is constructed with period $p \geq 1$, we only need to perturb the map f inside $\bar{W} \bigcup\left(\bigcup_{j=0}^{p-1} f^{j}(K)\right)$, where $\bar{W}=f^{-1}(K)$ if f is a homeomorphism, and $\operatorname{int}(\bar{W}) \supset f^{p-1}(W)$ otherwise. In both cases, by reducing $\delta>0$ from the very beginning, if necessary, we can construct \bar{W} such that $\operatorname{diam}(\bar{W})<\epsilon$ for a previously specified small $\epsilon>0$.
Proof of Theorems 1 and 3. From Lemmas 4.8 and 4.9, a typical map $f \in C^{0}(M)$ and also a typical $f \in \operatorname{Hom}(M)$ if $m=\operatorname{dim}(M) \geq 2$, has a periodic shrinking box K such that the return map $\left.f^{p}\right|_{K}: K \rightarrow \operatorname{int}(K)$ is conjugated to a model map $h \in \mathcal{H}$. We consider the homeomorphism $\phi: K \rightarrow D^{m}$ such that $\phi \circ f^{p} \circ \phi^{-1}=h \in \mathcal{H}$. Let $\psi:=\phi^{-1}$. Besides, Lemma 3.1 states that every map $h \in \mathcal{H}$ has an h-invariant ergodic measure ν with infinite metric entropy for h. Consider the pull-back measure $\psi^{*} \nu$ defined by $\left(\psi^{*} \nu\right)(B):=\nu\left(\psi^{-1}(B \cap K)\right.$ for all the Borel sets $B \subset M$. By construction, $\psi^{*} \nu$ is supported supported on $K \subset M$. Since ψ is a conjugation between h and $\left.f^{p}\right|_{K}$, the pull-back measure $\psi^{*} \nu$ is f^{p}-invariant and ergodic for f^{p}, and besides $h_{\psi^{*} \nu}\left(f^{p}\right)=+\infty$.

From $\psi^{*} \nu$, we will construct an f-invariant and f-ergodic measure μ supported on $\bigcup_{j=0}^{p-1} f^{j}(K)$, with infinite metric entropy for f. Precisely, for each Borel set $B \subset M$, define

$$
\begin{equation*}
\mu(B):=\frac{1}{p} \sum_{j=0}^{p-1}\left(f^{j}\right)^{*}\left(\psi^{*} \nu\right)\left(B \cap f^{j}(K)\right) \tag{27}
\end{equation*}
$$

where the pull back $\left(f^{j}\right)^{*}$ is defined by $\left(f^{j}\right)^{*}\left(\psi^{*} \nu\right)(A):=\left(\psi^{*} \nu\right)\left(f^{-j}(A)\right)$ for any Borel set $A \subset M$. Applying Equality (27), and taking into account that $\psi^{*} \nu$ is f^{p}-invariant and f^{p}-ergodic, it is standard to check that μ is f-invariant and f-ergodic. Besides, from the convexity of the metric entropy function, we deduce that

$$
h_{\mu}\left(f^{p}\right)=\frac{1}{p} \sum_{j=0}^{+\infty} h_{\left(f^{j}\right)^{*}\left(\psi^{*} \nu\right)}\left(f^{p}\right)=+\infty .
$$

Finally, recalling that $h_{\mu}\left(f^{p}\right) \leq p h_{\mu}(f)$ for any f-invariant measure μ and any natural number $p \geq 1$, we conclude that $h_{\mu}(f)=+\infty$.

5. Good sequences of periodic shrinking boxes

The purpose of this section is to prove Theorems 2 and 4 .
Definition 5.1. Let $f \in C^{0}(M)$ and let $K_{1}, K_{2}, \ldots, K_{n}, \ldots$ be a sequence of periodic shrinking boxes for f. We call $\left\{K_{n}\right\}_{n}$ good if it has the following properties (see Figure 5):

- $\left\{K_{n}\right\}_{n \geq 1}$ is composed of pairwise disjoint boxes.
- There exists a natural number $p \geq 1$, independent of n, such that K_{n} is a periodic shrinking box for f with a period p_{n}, a multiple of p. - There exists a sequence $\left\{H_{n}\right\}_{n \geq 0}$ of periodic shrinking boxes, all with period p, such that $K_{n} \cup H_{n} \subset \bar{H}_{n-1}, K_{n} \cap H_{n}=\emptyset$ for all $n \geq 1$, and $\operatorname{diam}\left(H_{n}\right) \rightarrow 0$ as $n \rightarrow+\infty$.

Remark. Definition 5.1 implies that $\bigcap_{n \geq 1} H_{n}=\left\{x_{0}\right\}$, where x_{0} is periodic with period p. Furthermore, for any $j \geq 0$ we have
$d\left(f^{j}\left(K_{n}\right), f^{j}\left(x_{0}\right)\right) \leq \operatorname{diam}\left(f^{j}\left(H_{n-1}\right)\right) \leq \max _{0 \leq k \leq p-1} \operatorname{diam}\left(f^{k}\left(H_{n-1}\right)\right) \xrightarrow{n \rightarrow \infty} 0$,
and thus

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sup _{j \geq 0} d\left(f^{j}\left(K_{n}\right), f^{j}\left(x_{0}\right)\right)=0 . \tag{28}
\end{equation*}
$$

Lemma 5.2. Typical maps $f \in C^{0}(M)$, and typical $f \in \operatorname{Hom}(M)$ if $m \geq 2$, have a good sequence $\left\{K_{n}\right\}_{n>1}$ of periodic shrinking boxes such that the return maps $\left.f^{p_{n}}\right|_{K_{n}}$ are topologically conjugated to model maps.

Proof. To see the G_{δ} property assume that f has a good sequence $\left\{K_{n}\right\}_{n}$ of periodic shrinking boxes. For each fixed n, the boxes K_{n} and H_{n} are also periodic shrinking with periods p_{n} and p respectively, for all g in an open set in $C^{0}(M)$ or in $\operatorname{Hom}(M)$ (see Definition 4.1). Taking the intersection of such open sets for all $n \geq 1$, we deduce that the same sequence $\left\{K_{n}\right\}$ is also a good sequence of periodic shrinking boxes for all g in a G_{δ}-set. Now, also assume that $\left.f^{p_{n}}\right|_{K_{n}}$ is a model map for all $n \geq 1$. From Lemmas 4.8 and 4.9, for each fixed $n \geq$ 1 , the family of continuous maps g such that the return map $\left.g^{p_{n}}\right|_{K_{n}}$ is topologically conjugated to a model, is a G_{δ}-set in $C^{0}(M)$ or in $\operatorname{Hom}(M)$. The (countable) intersection of all those G_{δ}-sets, produces a G_{δ}-set, as wanted.

To prove denseness fix $f \in C^{0}(M)$ or $f \in \operatorname{Hom}(M)$, and $\epsilon>0$. We will construct g in the ϵ-neighborhood of f and a good sequence of periodic shrinking boxes K_{n} for g such that, $\left.g^{p_{n}}\right|_{K_{n}}={ }_{\phi} h_{n} \in \mathcal{H}$ for all $n \geq 1$.

Typical maps $\tilde{f} \in C^{0}(M)$ and typical $\tilde{f} \in \operatorname{Hom}(M)$ have a periodic shrinking box H_{0} with period $p \geq 1$, such that $\left.\widetilde{f^{p}}\right|_{H_{0}}=_{\phi} h \in \mathcal{H}$ (Lemmas 4.8 and 4.9). Take such \widetilde{f} in the $(\epsilon / 6)$-neighborhood of f. Since $\widetilde{f^{p}}: H_{0} \rightarrow \operatorname{int}\left(H_{0}\right) \subset H_{0}$ is continuous, by the Brouwer Fixed Point Theorem there exists a periodic point $x_{0} \in \operatorname{int}\left(H_{0}\right)$ of period p. Lemma 3.1 and the argument at the end of the proofs of Theorems 1 and 3. show that the map \widetilde{f} has an ergodic measure μ supported on
$\bigcup_{j=0}^{p-1} \widetilde{f}^{j}\left(H_{0}\right)$ such that $h_{\mu}(\widetilde{f})=+\infty$. Therefore, by Poincaré Recurrence Lemma, there exists some recurrent point $y_{1} \in \operatorname{int}\left(H_{0}\right)$ for \tilde{f} such that $y_{1} \neq x_{0}$ (see Figure 5).

Choose $\delta_{1}>0$ small enough and construct a box \bar{B}_{1} such that $y_{1} \in$ $B_{1}:=\operatorname{int}\left(\bar{B}_{1}\right), \operatorname{diam}\left(\bar{B}_{1}\right)<\delta_{1}, x_{0} \notin \bar{B}_{1}$ and $\bar{B}_{1} \subset \operatorname{int}\left(H_{0}\right)$. We repeat the proofs of the dense property of Lemmas 4.2 and 4.5, using the recurrent point y_{1} instead of x_{0}, and the box \bar{B}_{1} instead of \bar{B} (see Figure 3). So, we deduce that there exists an ($\epsilon / 6$)-perturbation f^{*} of \widetilde{f}, and a periodic shrinking box $K_{1} \subset \bar{B}_{1}$ for f^{*}, with some period $p_{1} \geq p$ (see Figure 5). Besides, f^{*} coincides with \tilde{f} in $H_{0} \backslash B_{1}$ (recall Remark 4.3. Therefore, the same periodic point x_{0} of \tilde{f} survives for f^{*}, and the same initial box H_{0} is still periodic shrinking with period p for f^{*}. So, the compact sets of the family $\left\{f_{1}^{* j}\left(H_{0}\right)\right\}_{j=0,1, \ldots, p-1}$ are pairwise disjoint, and $f^{* p}\left(H_{0}\right) \subset \operatorname{int}\left(H_{0}\right)$. This implies that the period p_{1} of the new periodic shrinking box K_{1} for f^{*}, is a multiple of p.

Now, we apply the proofs of the dense property of Lemmas 4.8 and 4.9. using the shrinking box K_{1} instead of K (see Figure 4). We deduce that there exists an $(\epsilon / 6)$-perturbation g_{1} of f^{*}, such that K_{1} is still a periodic shrinking box for g_{1} with the same period p_{1}, but besides, the return map is now $\left.g_{1}^{p_{1}}\right|_{K_{1}}=h_{1} \in \mathcal{H}$. Taking into account Remark 4.10, we can construct g_{0} to coincide with f^{*} in the complement of $\bar{W}_{1} \cup\left(\bigcup_{j=0}^{p_{1}-1} f^{* j}\left(K_{1}\right)\right)$, where $\bar{W}_{1} \supset f^{p-1}\left(K_{1}\right)$ is a box, small enough not to contain the periodic point x_{0}, and to be contained in the interior of the shrinking box H_{0}. Therefore, x_{0} and H_{0} are still periodic with period p for g_{0}.

To summerize, we have built the periodic shrinking boxes H_{0} and K_{1} for a continuous map or homeomorphism g_{1}, with periods p and p_{1} respectively, where p_{1} is multiple of p, and a periodic point $x_{0} \in \operatorname{int}\left(H_{0}\right)$ (see Figure 5), such that:

$$
\begin{gathered}
K_{1} \subset H_{0} \backslash\left\{x_{0}\right\},\left.\quad g_{1}^{p_{1}}\right|_{K_{1}}={ }_{\phi} h_{1} \in \mathcal{H} \quad \text { and } \\
\left\|g_{1}-f\right\|<\left\|g_{1}-f^{*}\right\|+\left\|f^{*}-\widetilde{f}\right\|+\|\tilde{f}-f\|<\frac{\epsilon}{6}+\frac{\epsilon}{6}+\frac{\epsilon}{6}=\frac{\epsilon}{2} .
\end{gathered}
$$

We proceed by induction on $n \geq 1$, assume that H_{0}, \ldots, H_{n-1} and K_{1}, \ldots, K_{n} are periodic shrinking boxes (see Figure 5) of $g_{n} \in C^{0}(M)$ or $g_{n} \in \operatorname{Hom}(M)$, with periods p and p_{1}, \ldots, p_{n} respectively, where p_{i} is multiple of p, and that $x_{n-1} \in \operatorname{int}\left(H_{n-1}\right)$ is a periodic point of period p for g_{n}. Assume also that $K_{n} \subset H_{n-1} \backslash\left\{x_{n-1}\right\}$, that for $1 \leq j \leq n-1$

$$
\begin{equation*}
H_{j}, K_{j} \subset H_{j-1} ; H_{j} \cap K_{j}=\emptyset ; \operatorname{diam}\left(H_{j}\right)<\frac{\epsilon}{2^{j}} ;\left.g_{n}^{p_{j}}\right|_{K_{j}}={ }_{\phi} h_{j} \in \mathcal{H} \tag{29}
\end{equation*}
$$

Figure 5. Construction of a good sequence of periodic shrinking boxes.
and that we have a finite number of the previously constructed maps g_{1}, \ldots, g_{n} such that

$$
\begin{equation*}
\left\|g_{1}-f\right\|<\frac{\epsilon}{2}, \quad\left\|g_{j}-g_{j-1}\right\|<\frac{\epsilon}{2^{j}} \quad \forall j=2, \ldots, n . \tag{30}
\end{equation*}
$$

We will construct g_{n+1} and the boxes H_{n} and K_{n+1} that satisfy the above properties for $n+1$ instead of n, and such that for all $j=1, \ldots, n$, the boxes H_{j-1} and K_{j} are still periodic shrinking for g_{n+1} with the same periods p, p_{j}.

From the inductive hypothesis, g_{n} has a periodic shrinking box H_{n-1} of period p, a periodic point $x_{n-1} \in \operatorname{int}\left(H_{n-1}\right)$ of period p, and a periodic shrinking box $K_{n} \subset H_{n-1} \backslash\left\{x_{n-1}\right\}$ of period p_{n}, a multiple of p. We choose $0<\widetilde{\delta}_{n}<\epsilon / 2^{n}$ small enough, and construct a box $\widetilde{\widehat{B}_{n}} \subset H_{n-1}$ containing the periodic point x_{n-1} in its interior, disjoint from K_{n}, and such that $\operatorname{diam}\left(\widetilde{B}_{n}\right)<\widetilde{\delta}_{n}$. Repeating the proof of the density properties in Lemmas 4.2 and 4.5 (putting x_{n-1} instead of x_{0}, and $\widetilde{\delta}_{n}>0$ small enough), we construct an $\epsilon /\left(3 \cdot 2^{n+1}\right)$-perturbation \widetilde{g}_{n} of g_{n} and a periodic shrinking box $H_{n} \subset \widetilde{B}_{n}:=\operatorname{int}\left(\widetilde{B}_{n}\right)$ for \widetilde{g}_{n}. Besides, since x_{n-1} is a periodic point with period p, the period of H_{n} can be made equal to p (see Remark 4.6). By construction $H_{n} \subset \widetilde{B}_{n} \subset$ H_{n-1} is disjoint with K_{n} and with ∂H_{n-1}. To construct \widetilde{g}_{n} we only need to modify g_{n} inside \widetilde{B}_{n} (recall Remark 4.3). Therefore the same
periodic shrinking boxes $H_{0}, H_{1}, \ldots, H_{n-1}$ and $K_{1}, K_{2}, \ldots, K_{n}$ of g_{n}, are preserved for \widetilde{g}_{n}, with the same periods.

Now, as in the proof of Lemmas 4.8 and 4.9, we construct a new $\epsilon /\left(3 \cdot 2^{n+1}\right)$-perturbation g_{n}^{*} of \widetilde{g}_{n}, such that we can ϕ-conjugate $\left.g_{n}^{* p}\right|_{H_{n}}$ to a map in \mathcal{H}. To construct g_{n}^{*} we only need to modify \widetilde{g}_{n} in $W_{n} \cup$ $\left(\bigcup_{j=0}^{p-1} g_{n}^{j}\left(H_{n}\right)\right.$, where \widetilde{W}_{n} is a neighborhood of $\widetilde{g}_{n}^{p-1}\left(H_{n}\right)$ that can be taken arbitrarily small (see Remark 4.10). Therefore we do not need to modify \widetilde{g}_{n} or g_{n} outside H_{n-1} or inside K_{n}. We conclude that the same shrinking boxes $K_{1}, \ldots, K_{n} ; H_{0}, \ldots, H_{n-1}$ for \widetilde{g}_{n} and g_{n}, are still periodic shrinking for g_{n}^{*}, with the same periods and that $\left.g_{n}^{* p_{j}}\right|_{K_{j}}=$ $\left.\tilde{g}_{n}^{p_{j}}\right|_{K_{j}}={ }_{\phi} h_{j}$ for all $j=1, \ldots, n$.

When modifying g_{n} inside $H_{n-1} \backslash K_{n}$ to obtain \widetilde{g}_{n} and g_{n}^{*}, the periodic point x_{n-1} of period p for g_{n}, may not be preserved. But since $H_{n} \subset$ $H_{n-1} \backslash K_{n}$ is a periodic shrinking box with period p for g_{n}^{*}, by the Brouwer Fixed Point Theorem, there exists a maybe new periodic point $x_{n} \in \operatorname{int}\left(H_{n}\right) \backslash K_{n}$ for g_{n}^{*}, with the same period p.

Since the return map $\left.g_{n}^{* p}\right|_{H_{n}}$ is a model, there exists an ergodic measure with infinite entropy (see Lemma 3.1), supported on the g_{n}^{*}-orbit of H_{n}. Therefore, there exists a recurrent point $y_{n} \in \operatorname{int}\left(H_{n}\right)$ such that $y_{n} \neq x_{n}$. We choose $\delta_{n}>0$ small enough, and a compact box $\bar{B}_{n} \subset \operatorname{int}\left(H_{n}\right) \backslash\left\{x_{n}\right\}$ such that $y_{n} \in B_{n}:=\operatorname{int}\left(\bar{B}_{n}\right)$ and $\operatorname{diam}\left(\bar{B}_{n}\right)<\delta_{n}$. Repeating the above arguments, and if δ_{n} is small enough, we construct a new $\epsilon /\left(3 \cdot 2^{n+1}\right)$-pertubartion g_{n+1} of g_{n}^{*} and a box $K_{n+1} \subset B_{n}$ that is periodic with some period p_{n+1} for g_{n+1}, and such that $\left.g_{n+1}^{p_{n+1}}\right|_{K_{n+1}}$ is ϕ-conjugate to a map in \mathcal{H}.

To construct such a perturbation g_{n+1} of \widetilde{g}_{n}, we only need to modify \widetilde{g}_{n} in B_{n}, and later in $W_{n+1} \cup\left(\cup_{j=0}^{p_{n+1}} \bar{g}_{n}\left(K_{n+1}\right)\right.$ (recall Remarks 4.3 and 4.10), where W_{n+1} is a small set (provided that $\delta_{n}>0$ is small enough). Therefore, g_{n+1} can be constructed so the point x_{n} is still periodic with period p for g_{n+1}, and the same boxes $H_{0}, H_{1}, \ldots, H_{n}, K_{1}, \ldots, K_{n}$ are still shrinking periodic for g_{n+1}, with the same periods. Moreover, $\left.g_{n+1}^{p_{j}}\right|_{K_{j}}=\left.g_{j}^{p_{j}}\right|_{K_{j}}=h_{j} \in \mathcal{H}$ for all $j=1, \ldots, K_{n}$.

In particular H_{n} is periodic shrinking with period p for g_{n+1}. And it contains K_{n+1} by construction. This implies that the period p_{n+1} of K_{n+1} is a multiple of p. By construction we have,

$$
\left\|g_{n+1}-g_{n}\right\| \leq\left\|g_{n+1}-g_{n}^{*}\right\|+\left\|g_{n}^{*}-\widetilde{g}_{n}\right\|+\left\|\widetilde{g}_{n}-g_{n}\right\|<3 \cdot \frac{\epsilon}{3 \cdot 2^{n+1}}=\frac{\epsilon}{2^{n+1}} .
$$

Besides $\operatorname{diam}\left(H_{n}\right)<\widetilde{\delta}_{n}<\epsilon / 2^{n}$. We have constructed g_{n+1} and the boxes H_{n} and K_{n+1} that satisfy the inductive properties for $n+1$ instead of n, as wanted.

We have constructed a sequence $\left\{g_{n}\right\}_{n \geq 1}$ of continuous maps or homeomorphisms on M, and two sequences $\left\{H_{n}\right\}_{n \geq 1},\left\{K_{n}\right\}$ of compact boxes such that the Properties (29) and (30) are satisfied for all $n \geq 1$. Since $\left\|g_{n+1}-g_{n}\right\| \leq \epsilon / 2^{n+1}$ for all $n \geq 1$ the sequence $\left\{g_{n}\right\}_{n \geq 1}$ is Cauchy. So, there exists a limit map g. And since g_{n} is an ϵ-perturbation of f for all $n \geq 1$, the limit map g also is. Finally, by construction we have $g_{k}(x)=g_{n}(x)$ for all $x \in \bigcup_{j=0}^{p_{n}} g_{n}^{j}\left(K_{n}\right),\left.g_{k}^{p_{n}}\right|_{K_{n}}=h_{n} \in \mathcal{H}$ for all $n \geq 1$ and for all $k \geq n$. So, we conclude that $\left\{K_{n}\right\}_{n \geq 1}$ is a good sequence of periodic shrinking boxes for g, and that $\left.g^{p_{n}}\right|_{K_{n}}={ }_{\phi} h_{n} \in \mathcal{H}$, as wanted.

Remark 5.3. As a consequence of Lemmas 5.2 and 3.1 (after applying the same arguments at the end of the proof of Theorems 1 and 3), typical continuous maps and homeomorphisms f have a sequence of ergodic measures μ_{n}, each one supported on the f-orbit of a box K_{n} of a good sequence $\left\{K_{n}\right\}_{n \geq 1}$ of periodic shrinking boxes for f, satisfying $h_{\mu_{n}}(f)=+\infty$ for all $n \geq 1$.

Let \mathcal{M} denote the metrizable space of Borel probability measures on a compact metric space M, endowed with the weak* topology. Fix a metric dist* in \mathcal{M}.

Lemma 5.4. For all $\epsilon>0$ there exists $\delta>0$ that satisfies the following property: if $\mu, \nu \in \mathcal{M}$ and $\left\{\bar{B}_{1}, \bar{B}_{2}, \ldots, \bar{B}_{r}\right\}$ is a finite family of pairwise disjoint compact balls $\bar{B}_{i} \subset M$, and if $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset$ $\bigcup_{i=1}^{r} \bar{B}_{i}$, and $\mu\left(\bar{B}_{i}\right)=\nu\left(\bar{B}_{i}\right), \operatorname{diam}\left(\bar{B}_{i}\right)<\delta$ for all $i=1,2, \ldots, r$, then $\operatorname{dist}^{*}(\mu, \nu)<\epsilon$.

Proof. If $M=[0,1]$ the proof can be found for instance in CT, Lemma 4]. If M is any other compact manifold of finite dimension $m \geq 1$, with or without boundary, just copy the proof of [CT, Lemma 4] by substituting the pairwise disjoint compact intervals $I_{1}, I_{2}, \ldots, I_{r} \subset$ $[0,1]$ in that proof, by the family of paiwise disjoint compact boxes $\bar{B}_{1}, \bar{B}_{2}, \ldots, \bar{B}_{r} \subset M$.

Proofs of Theorems 2 and 4. For any $\epsilon>0$, take $\delta>0$ as in Lemma 5.4. Applying Lemma 5.2, typical continuous maps or homeomorphisms f have a good sequence of periodic shrinking boxes $\left\{K_{n}\right\}_{n \geq 1}$, and a sequence $\left\{\mu_{n}\right\}$ of ergodic f-invariant measures such that $h_{\mu_{n}}(f)=$ $+\infty$ (see Remark 5.3) and such that $\operatorname{supp}\left(\mu_{n}\right) \subset \bigcup_{j=1}^{p_{n}-1} f^{j}\left(K_{n}\right)$, where $p_{n}=h_{n} \cdot p$ is the period of the shrinking box K_{n}. Taking into account that $\left\{f^{j}\left(K_{n}\right)\right\}_{0 \leq j \leq p_{n}-1}$ is a family of pairwise disjoint compact sets,
and $f^{p_{n}}\left(K_{n}\right) \subset \operatorname{int}\left(K_{n}\right)$, we deduce

$$
\mu\left(f^{j}\left(K_{n}\right)\right)=\mu\left(K_{n}\right)=\frac{1}{p_{n}}=\frac{1}{h_{n} p} \quad \forall j=0,1, \ldots, p_{n},
$$

(even if f were non invertible).
From Definition 5.1, there exists a periodic point x_{0} of period p such that $\lim _{n \rightarrow+\infty} \sup _{j \geq 0} d\left(f^{j}\left(K_{n}, f^{j}\left(x_{0}\right)\right)=0\right.$. Therefore, there exists $n_{0} \geq 1$ such that $d\left(f^{j}\left(K_{n}, f^{j}\left(x_{0}\right)\right)<\delta / 2\right.$ for all $j \geq 0$ and for all $n \geq n_{0}$. Consider the family of pairwise disjoint compact balls \bar{B}_{0}, \bar{B}_{1}, \ldots, \bar{B}_{p-1}, centered at the points $f^{j}\left(x_{0}\right)$ and with radius $\delta / 2$, we obtain $f^{j}\left(K_{n}\right) \subset \bar{B}_{j(\bmod . p)}$ for all $j \geq 0$ and for all $n \geq 0$. Therefore,

$$
\mu_{n}\left(\bar{B}_{j}\right)=\frac{1}{p} \quad \forall j=0,1, \ldots, p-1, \quad \forall n \geq n_{0}
$$

Finally, applying Lemma 5.4, we conclude dist $^{*}\left(\mu_{n}, \mu_{0}\right)<\epsilon$ for all $n \geq$ n_{0}, where $\mu_{0}:=(1 / p) \sum_{j=0}^{p-1} \delta_{f^{j}(p)}$ is the f-invariant probability measure supported on the periodic orbit of x_{0}, which has zero entropy.

References

[AGW] E. Akin, E. Glasner and B. Weiss, Generically there is but one self homeomorphism of the Cantor set Trans. A.M.S. 360 (2008), no. 7, 3613-3630.
[CT] E. Catsigeras and S. Troubetzkoy, Pseudo-physical measures for typical continuous maps of the interval. Preprint ArXiV 1705.10133 [Math.DS], 2017.
[FHT] E. de Faria, P. Hazard and C. Tresser, Infinite Entropy is Generic in Hölder and Sobolev Spaces. C.R. Acad. Sci. Paris, Ser. I, 355, (2017), 1185-1189.
[FHT1] E. de Faria, P. Hazard and C. Tresser, Genericity of infinite entropy for maps with low regularity. Preprint ArXiV 1709.02431 [Math.DS], 2017.
[Ha] P. Hazard, Maps in dimension one with infinite entropy Preprint ArXiV 1710.03369 [Math.DS], 2017.
[Ke] G. Keller, Equilibrium States in Ergodic Theory Cambridge Univ. Press, Cambridge, 1998
[Ya] K. Yano, A remark on the topological entropy of homeomorphisms Invent. Math. 59 (1980), 215-220.

Instituto de Matemática y Estadística "Prof. Ing. Rafael Laguardia" (Imerl), Universidad de la República, Av. Julio Herrera y Reissig 565, C.P. 11300, Montevideo, Uruguay

E-mail address: eleonora@fing.edu.uy
URL: http:/fing.edu.uy/~eleonora
Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
postal address: I2M, Luminy, Case 907, F-13288 Marseille Cedex 9, France

E-mail address: serge.troubetzkoy@univ-amu.fr
URL: http://www.i2m.univ-amu.fr/perso/serge.troubetzkoy/

[^0]: We gratefully acknowledge support of the project "Sistemas Dinámicos" by CSIC, Universidad de la República (Uruguay). The project leading to this publication has also received funding Excellence Initiative of Aix-Marseille University A*MIDEX and Excellence Laboratory Archimedes LabEx (ANR-11-LABX-0033), French "Investissements d'Avenir" programmes.

