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Abstract

We study the deterministic dynamics of networks N composed by m non identical,
mutually pulse-coupled cells. We assume weighted, asymmetric and positive (coopera-
tive) interactions among the cells, and arbitrarily large values of m. We consider two
cases of the network’s graph: the complete graph, and the existence of a large core (i.e.
a large complete subgraph). First, we prove that the system periodically eventually
synchronizes with a natural “spiking period” p ≥ 1, and that if the cells are mutually
structurally identical or similar, then the synchronization is complete (p = 1) . Second,
we prove that the amount of information H that N generates or processes, equals log p.
Therefore, if N completely synchronizes, the information is null. Finally, we prove that
N protects the cells from their risk of death.
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1 Introduction

The theory of deterministic dynamical systems composed by two or more coupled dynamical
units assumes that each unit - which we call cell - has a proper own dynamics, and that the
couplings among the units are interactions that depend on the instantaneous states of the
cells [33, 7].

Among the systems of interacting units, we focus on those that are pulsed-coupled (i.e.
the interactions are instantaneous). In particular, the global system can be understood as
a multi-dimensional differential or difference equation with impulsive terms [18].

On the one hand, the theory of dynamically interacting units is a source of mathematical
open questions [33]. In particular, those systems governed by impulsive differential equations
[28] pose mathematical problems that are mostly open, except in particular cases or low
dimensions.
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On the other hand, the network of interacting dynamical units is a particular model
of a coalitional game, that evolves or changes on time. We will discuss this relation in
Subsection 1.2.

The dynamical systems composed by mutually interacting units, and in particular those
that are pulsed-coupled, have relevance in many applications. As examples in Physics, a
two-dimensional impulsive differential equation models the joint dynamics of two or more
coupled oscillators [27]. In particular, they are used in applications to Light-Controlled-
Oscillators (LCO), [25]. The mathematical investigation of a genetic regulatory network
of two antagonist genes, is also modeled as a network of pulse-coupled units [9]. In Neu-
roscience, among the theoretical methods of research, the mathematical analysis of the
dynamics of pulse-coupled networks is applied [12, 16]. In Engineering, networks of coupled
dynamical units are designed for control systems and communications [32]. Computational
research on artificial intelligence, by means of artificial neuronal networks, is used to an-
alyze, simulate, and investigate on data obtained from dynamical systems of interacting
units with a large degree of complexity [8]. In Economics, networks of coupled units are
used to investigate the equilibrium states in social systems of interacting agents [1]. Arti-
ficial neuronal networks are applied for the prediction of the exchange market [21], also to
investigate on financial markets [17], and for the accounting of financial applications [15]. In
Ecology, networks of interacting units model the dynamics of predator-prey communities of
two or more species [30, 13]. The dynamics of an infectious disease, taking into account the
interaction among populations of diverse infectious agents, is modelled as a neural network
[26]. In Geosciences, the forecast of ozone peaks in weather prediction uses computational
methods on artificial neuronal networks [10]. In Social Sciences, the dynamics of large
WWW social networks is mathematically modelled by the interactions of their individuals
[22, 31]; and the self- synchronization of many small clusters of cells in a low-dimensional
network models the dynamics of a medieval social network [3].

1.1 The object and method of research

Along this paper we investigate, by exact mathematical analysis and deductive proofs, the
global dynamics of certain pulse-coupled deterministic networks of m cooperative cells, for
large values of m.

Each cell i ∈ {1, 2, . . . ,m} is governed by a deterministic dynamical sub-system, which
- if i were hypothetically isolated from the network - we call the free dynamics of i. Besides,
each cell i acts on the other cells j 6= i of the network at certain instants ti, which we call
the spiking or milestone instants of i. Conversely, each cell i receives the actions from the
other cells j 6= i at the spiking instants tj of j.

The free dynamics of each cell evolves governed by a finite-dimensional ordinary dif-
ferential equation, joint with an autonomous and instantaneous reset or update rule. The
update rule applies when the state of i arrives to a pursued goal or threshold level θi. The
update rule resets the state of i, or equivalently, it changes the velocity according to which
the free dynamics evolves. The free dynamics of the many cells of the network may be
mutually different. As a particular case, in Neuroscience the model of the free dynamics
of each cell - by integration of a differential equation plus a reset or update rule - is called
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integrate and fire. Each reset or update event of the cell (the neuron) is called a spike. In
brief, the spike of a cell i is produced when its state arrives to the goal θi.

The cells compose the network by mutual interactions between any ordered pair (i, j)
such that 1 ≤ i, j ≤ m and i 6= j. These interactions exist in both directions (some
interactions may be zero), but are neither necessarily symmetric nor simultaneous. Roughly
speaking, the action from the cell i to the cell j 6= i is a discontinuity jump ∆i,j - applied on
the state of j - that is produced at the instant ti when i spikes. So, the instant ti depends
on the state of i. The rule is the same to define the action from the cell j to the cell i, but
the matrix (∆)i,j is not necessarily symmetric. Besides, the instant ti when the action ∆i,j

is applied, is in general different from the instant tj when the action ∆j,i is applied.

Our purpose of research is to find qualitative and quantitative relevant characteristics of
the global dynamics of such an abstract network, while time t evolves to the future. As said
above, the methodology is to find the exact abstract mathematical statements and their
deductive proofs.

We take the main ideas from [4], in which a model of a network, composed by integrate
and fire biological neurons, is studied by the exact mathematical method.

The main differences between the dynamical system that we study here and the one
studied in [4], are the following: First, we assume that the cells are cooperative (which in
Neuroscience are called excitatory). This means that ∆i,j ≥ 0 for all ordered pairs (i, j)
such that i 6= j, and the value zero is admitted in some of our results. In [4], any sign of ∆i,j

is admitted by hypothesis, but only nonzero values are assumed. Second, we do not assume
that the free dynamics is the same for all the cells. In [4] all the cells are identical. Third,
we neither assume the linearity of the differential equation that governs the free dynamics
of each cell, nor the existence of a Lyapunov stable equilibrium state for the solution flow
of this differential equation. In [4] these latter two conditions are assumed.

1.2 The network as a cooperative game that evolves on time

The mathematical model of the network N that we study in this paper is also an evolutive
game represented by a graph whose m vertices are the players i ∈ {1, . . . ,m} (the cells),
and whose edges ∆i,j (the interactions) are directed and weighted. The hypothesis of
cooperativity among the individuals, namely ∆i,j ≥ 0 for all i 6= j makes the game work in
an imitate the best strategy, which produce players that adopt a myopic behaviour ([14]).
In fact, by hypothesis, each cell or player i just knows its own actions to the other players
j 6= i, the value of its own satisfaction variable, and the actions it receives from the other
cells. But i ignores the global state and dynamical behaviour of the whole network.

The model of the network N , as described in Subsection 1.1 from the dynamical view-
point, is a cooperative or coalitional game, that changes on time. It disregards the individual
strategies of its cells (or players) and instead, it focusses on the coalitions (which we call
clusters of cells), defined as nonempty subsets of cells i ∈ {1, . . . ,m} whose satisfaction
variables Si arrive simultaneously to their respective goals or threshold levels θi > 0.

The characteristic function ν : 2m 7→ R+ of the coalitional game (i.e. the function
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assigning the total gain or payment ν(A) to each coalition A ⊂ {1, . . . ,m}, with the agree-
ment ν(∅) = 0) can be defined as the sum of the goal levels θi of the cells i ∈ A. In fact, at
each instant tn for which a nonempty coalition In is formed (i.e. a cluster of simultaneously
spiking cells is exhibited), the satisfaction variable of each cells i ∈ In equals its respective
goal or threshold level θi. Since θi > 0 for all i ∈ N , the coalitional game is convex, i.e.

ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B) ∀ A,B ⊂ N (1)

We note that, since in our case ν(A) =
∑

i∈A θi, inequality (1) is indeed an equality. Thus:

ν(A ∪ {i})− ν(A) ≤ ν(B ∪ {i})− ν(B) ∀ A ⊂ B ⊂ N \ {i}, ∀ i ∈ N .

In other words, the gain for a player i for joining a coalition B larger than A, is non negative.
As for any convex coalitional game, N has a nonempty core of solutions. In Game

Theory, a solution in the core is a vector

(z1, z2, . . . , zi, . . . , zm) ∈ Rm,

which is called “allocation” or “payoff vector”, such that∑
i∈I

zi ≥ ν(I) ∀ I ⊂ N . (2)

For our model, the payoff vector at the n-th. instant tn when at least one cell arrives
to its goal level and spikes, can be defined by the following formula:

zi = Si(t
−
n ) +

∑
j 6=i, j∈In

∆j,i,

where Si(t
−
n ) ∈ [0, θi] is the value of the satisfaction variable Si of the cell i just before

instant tn (cf. Definition 2.1), In is the cluster at the spiking instant tn (cf. Definition 2.7)
and ∆j,i ≥ 0 is the cooperative action from the cell j ∈ In to i 6= j at any instant for which j
spikes. In Equation (10) we will precisely state the rule according to which the cooperative
interactions ∆j,i among the cells of the network increase their satisfaction variables. In
brief, the cell i spikes at instant tn, hence it belongs to the cluster In, if and only if one of
the following conditions is satisfied: either the satisfaction variable Si arrives to the goal
value θi spontaneously (due to the free dynamics of i) at instant t−n , or the satisfaction
variable at instant t−n is smaller than θi but suddenly increases to become larger or equal
than θi, by the adding of some positive cooperative actions ∆j,i from cells j 6= i that spike
at the same instant tn. In any case, the component zi of the payoff vector is zi ≥ θi if
zi ∈ In. Since ν(In) =

∑
i∈In θi we deduce that Inequality (2) holds in the coalitional game

N .
Although the characteristic function ν is assumed to be invariant with time t, the payoff

vector changes with t, because the satisfaction variables evolve on time, and the interactions
among the cells are not constantly applied at any time. In fact ∆j,i is effectively added
to the satisfaction variable Si just at the instants for which the cell j spikes. So N is an
evolutive coalitional game: its solutions depend on time.
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In Definition 3.1 we define the global synchronization phenomenon of the network N
as the recurrent exhibition - infinitely many times in the future - of the so called “grand
coalition”. Precisely, all the cells of the network compose a single cluster: all of them
spike simultaneously, and this phenomenon occurs infinitely many times. In Theorem 3.5
we prove that, if the number m of players is large enough in relation with the minimum
positive interaction (namely, m is large compared with the minimum payoff component at
any instant), then the global synchronization occurs recurrently. Nevertheless, between two
instants t∗2 > t∗1 when the grand coalition is exhibited, there may appear many coalitions or
clusters that are smaller than the grand coalition. In Theorem 3.20 we prove that if more
different coalitions recurrently appear in the future, then the amount of information of the
global dynamics of the network increases.

In spite that the network can be studied as a coalitional evolutive game, it has some
important differences from the models that are usually investigated in Game Theory, even
from those that focus on evolutive games (e.g. [14, 1, 19]): For instance, in our model, each
cell or player i decides the instants when it acts in the network, by integrating the states of
its own internal dynamics with the actions (or payoffs) that it had received from the other
players. So, there does not exist a forcing external mechanism making the players interact
sharing a resource. As a counterpart, neither the cell nor the coalition, has an alternative
to decide how to choose among several strategies, its actions on the network. The cells and
the coalitions are not optimizers. The network is just a deterministic dynamical system
whose state suffers instantaneous changes according to the states of its cells and, as a
result of the positive interactions among the cells, it shows patterns of coalitions that spike
simultaneously infinitely many times in the future.

1.3 The hypothesis

We adopt three types of hypothesis. First, we assume that the number of cells - in a part or
the whole network - is large enough with respect to certain other parameters of the network
(Inequality (14) of Theorem 3.5 and a similar inequality in Corollary 3.24). Second, we
study the cases for which the cells are cooperative (cf. Definition 2.2). Third, we assume
that the network’s graph is complete, or, if not, that there exists a large cooperative core
(i.e., a complete subgraph of cells which are fully cooperative, cf. Definition 3.23).

1.4 The results to be proved

Under the hypothesis above described, we prove three results: the periodic eventual syn-
chronization, the positiveness of the protection factor of the network against the risk of
death of its cells, and the value of the total amount of information that the network is able
to generate or process.

1.4.1 Results about synchronization

In Theorems 3.5, 3.6 and Corollary 3.24, we prove that the network necessarily self-synchronizes
the spikes of clusters of cells periodically, after a transitory waiting time, and that this be-
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haviour is robust (i.e. it persists under small perturbation of the numerical and functional
parameters of the network). After the transients, the synchronized clusters are independent
of the initial state. But the finite transitory time-interval itself, does depend on the initial
state.

We give the word “synchronization” an exact mathematical meaning (cf. Definitions
3.2 and 3.1). By eventual periodic spike-synchronization, we mean that the interactions
among all the cells within the same cluster are produced simultaneously, infinitely many
times in the future and periodically - but not necessarily at all the spiking instants of the
network (Definition 3.2). Nevertheless, this definition is rather non-standard in Physics.
(For the concept of synchronization and phase locking in Physics see for instance [23].) In
fact, the classical definition of synchronization requires all the cells be identical (e.g. [20]).
But along this paper, we are not assuming the hypothesis of identical cells, neither in the
whole network nor in a part of it.

Joining the results of Theorems 3.5 and Theorem 3.22, we prove that the events’ syn-
chronization of more than one cluster is produced only if the cells are mutually different.
In other words, if all the cells are structurally identical - also if they are non identical but
similar - we prove that all the events of the whole network synchronize, after a transitory
time-interval and from any initial state (Theorem 3.22, Part (a)). In brief, networks of
similar cooperative cells form a unique spike-synchronized cluster.

In their seminal article [20], Mirollo and Strogatz proved that networks of identical fully
cooperative cells, with constant interaction ∆i,j = ∆ > 0 ∀ i 6= j, synchronize all their
spikes. In [2], Bottani proved a very general result under a certain stability hypothesis,
stating the synchronization of complete networks composed by a large number of excitatory
neurons (i.e. cooperative cells) that are modelled as integrate and fire oscillators: Either
all the oscillators evolve synchronized in block, or subsets of synchronized oscillators ap-
pear always in stable avalanches. The synchronization of several clusters of cells, provide
repetitive patterns that allow the network to organize the information. In Theorem 3.5
we generalize Bottani’s results to mathematically abstract networks of pulse-coupled co-
operative cells, that are neither necessarily identical nor similar, and without the stability
hypothesis. In Corollary 3.24 we generalize the statements for some kind of not completely
connected networks.

1.4.2 Results about the protection and the amount of information

In Theorem 3.15 we prove that cooperative networks with a large number of cells protect
their cells from external negative interferences, diminishing their risk of death (cf. [11]).
This protection is due to the synchronization of sufficiently large clusters. As a counterpart,
in Part (c) of Theorem 3.22, we prove that if a complete synchronization is achieved, then
the total amount of information that the network can generate, or process, is null. But
if the synchronization is not complete - as said above this occurs if perceptible differences
exist among the free dynamics of the cells - then the network is able to process a positive
amount of information (see Theorem 3.20, in the case that the spiking period p is not 1).
Nevertheless, this amount of information is necessarily much lower than the theoretical
maximum that a general network could process, according to the number of cells that are
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employed in the task. This is because, due to Theorem 3.5, in large cooperative networks
there exist large clusters of cells whose spikes are produced all together. Therefore, they
contribute to enlarge the number of different spiking-code patterns, as if each cluster had a
unique cell.

The null amount of information of the cooperative networks that completely synchronize,
opposes to many networks composed by all antagonist cells. These latter may exhibit a large
amount of (rather unpredictable) information. See for instance the “virtual chaos” in [5, 6],
or the “stable chaos” in [24]. As a counterpart, the networks composed by all antagonist
cells unprotect their cells and so, they enlarge their risk of death (cf. Remark 3.13). As
a consequence, if all the interactions were antagonist, the whole network would be in risk,
since the death of many of its cells can drastically diminish the initial richness of its global
dynamics.

Therefore, a large network that performs both features: protects their cells and processes
a large amount of not always structured and predictable information, should theoretically be
composed by some cooperative cells and by some antagonist ones, in a more or less balanced
interplay among them. Nevertheless, networks of antagonist cells (which in Neuroscience
are called inhibitory neurons) also may synchronize and exhibit null amount of information,
if the hypothesis of instantaneous spikes is released to take into account the delays [29].

Large networks of all cooperative cells with instantaneous interactions- the ones that we
study along this paper - also show a balanced interplay between the amount of information
and the protection of the network against the risk of death of its cells. In fact, in Theorem
3.22, we prove that the network maximizes its protection to the cells, if they have mutually
similar free dynamics. But if so, the total amount of information becomes zero (Part (c)
of Theorem 3.22). In other words, if the network is able to process a positive amount
of information, then the cells are mutually different. In particular, the time-constants of
their respective free dynamics must be diverse. In such a case, the network may show many
different clusters of mutually synchronized cells, and a long period p until the spike patterns
of the whole network repeat. In Theorem 3.20, we prove that the amount of information
H that a fully cooperative network is able to generate or process, equals log2 p. So, H is
larger if the number of synchronized clusters and the period p are larger.

The paper is organized as follows:
In Section 2 we pose the previous definitions and hypothesis that are assumed for the

mathematical model of a cooperative network of pulsed coupled dynamical units. In Section
3, we include the particular mathematical definitions and the statements of the theorems
that we will prove along the paper. From Section 4 to Section 8 we write the proofs.

2 Previous definitions and assumptions

We call the scale of the cell the micro-scale relative to the whole network N under study.
The state xi of a cell i is - by hypothesis - governed by a continuous, deterministic and
autonomous dynamical system Φi, on time t ∈ R, t ≥ 0, which we call the free dynamics
of the cell i. It evolves on a finite-dimensional, differentiable, riemannian and compact
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manifold Xi. Therefore, xi is a (maybe multidimensional) variable living on a compact
metric space with a local euclidean structure, such that for each instant t ≥ 0 and for each
initial state xi(0), the continuous mapping Φi satisfies the following equalities:

xi(t) = Φi(xi(0), t), xi(0) = Φi(xi(0), 0),

xi(t+ s) = Φi(xi(0), t+ s) = Φi(Φi(xi(0), t), s) = Φi(xi(t), s) ∀ t, s ≥ 0.
(3)

The flow defined on a finite dimensional manifold by an autonomous ordinary differential
equation is an example of a continuous dynamical system, and may model each cell. Each
cell i has its own free dynamics, governed by its own rules. The spaces Xi where the
respective states xi of the cells live, and their dimensions, may be mutually different.

We call the scale of the whole network the macro-scale or also, the global scale. It is
defined by the interactions ∆i,j among any ordered pair (i, j), i 6= j of different cells. These
interactions are produced, in our case, according to certain deterministic rules that we will
state in Definition 2.1.

Each network N may be a cell of a larger hyper-macro network. We will not study this
hyper-macro system, nor the role of N as a cell of it. Nevertheless, we assume that this
hyper-macro system exists and may perturb the state xi of each individual cell i in N .

Two main concepts are the spikes or milestones and the eventual death of a cell.

Definition 2.1 (Spikes or milestones, satisfaction Si and goal θi)
The spikes or milestones of a cell i are the instants ti when i sends actions to the other

cells j of the network N . The spiking instants or milestones of the cell i are defined by i,
according to the value of a real variable Si, which depends on the (maybe multidimensional)
state xi of the cell. Thus, Si depends on time t, i.e. Si = Si(xi(t)). We call Si the satisfaction
variable of the cell i. This variable may be, for instance, the algebraic sum of several positive
or negative components that depend on the state xi.

By hypothesis, the satisfaction variable Si, while not perturbed from the exterior of the
cell i, satisfies the following two conditions, (4) and (6):

dSi
dt

= gi(xi), if 0 ≤ Si ≤ θi, (4)

where
gi ∈ C1(Xi,R+), gi(xi) > 0 ∀ xi ≤ Xi and θi > 0. (5)

We call θi the goal level or threshold level. It may be achieved at many different states xi of
the cell, i.e. the set S−1i (θi) ⊂ Xi is not necessarily reduced to a single point. Nevertheless,
we assume, by hypothesis:

∃ unique xi,reset ∈ Xi such that Si(xi,reset ) = 0. (6)

By hypothesis, at instant 0 the initial state xi(0) of each cell satisfies:

0 ≤ Si(xi(0)) < θi. (7)
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On the one hand, at each instant ti such that limt→t−i
Si(xi(t)) = θi, the cell i reacts in

the following way:
First, the following reset or update rule holds:

lim
t→t−i

Si(xi(t)) ≥ θi ⇒ xi(ti) = xi,reset ⇒ Si(xi(ti)) = 0, (8)

i.e. the state xi of the cell i jumps to xi,reset at intant ti. Thus, the satisfaction variable
resets to zero at each milestone-instant.

Second, the cell i “produces” a spike at each milestone-instant ti, i.e. i plays in the
game N when its satisfaction variable Si arrives to the goal θi. At instant ti the cell i sends
instantaneous signals ∆i,j to the other cells j 6= i.

On the other hand, when one and only one cell j 6= i is spiking at an instant tj (tj may
be different from ti), it sends to i a signal ∆j,i ≥ 0 (in general, ∆j,i 6= ∆i,j). In such a case,
by hypothesis, the state xi suffers a discontinuity jump such that:

Si(xi(tj)) = Si(xi(t
−
j )) + ∆j,i if Si(xi(t

−
j )) + ∆j,i < θi,

Si(xi(tj)) = 0 otherwise.
(9)

(We denote Si(xi(t
−
j )) = limt→t−j

Si(t).)

Finally, by hypothesis of the model, if all the cells of a nonempty set In = {j1, . . . , jk}
- of k different cells - spike simultaneously at some instant, say tn, and if ∆j,i ≥ 0 for all
j ∈ In and for all i 6∈ In, then the state xi of any other cell i 6∈ In suffers a discontinuity
jump such that:

Si(xi(tn)) = Si(xi(t
−
n )) +

∑
j∈In

∆j,i if Si(xi(t
−
n )) +

∑
j∈In

∆j,i < θi,

Si(xi(tn)) = 0 otherwise.

(10)

Definition 2.2 (Cooperative and antagonist cells)
A cell j is:
cooperative if ∆j,i ≥ 0 for all i 6= j and maxi ∆j,i > 0,
fully cooperative if ∆j,i > 0 for all i 6= j,
antagonist if ∆j,i ≤ 0 for all i 6= j and mini ∆j,i < 0,
fully antagonist if ∆j,i < 0 for all i 6= j,
mixed if there exist i1 6= j and i2 6= j such that ∆i1,j > 0 and ∆i2,j < 0.

We call a network (fully) cooperative if all its cells are (fully) cooperative.

Formulae (9) and (10) show that when each cooperative cell j spikes, then it contributes
to enlarge the values of the satisfaction variables Si of the other cells i 6= j. Thus, j helps
the other cells i to approach to their respective goal levels, and so, it shortens the waiting
times until the milestones of the others occur.

When an antagonist cell j spikes, it reduces the values of the satisfaction variables Si of
the other cells Thus, j enlarges the waiting times of the others to arrive to their respective
goal levels.
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In this paper, we will focus on full cooperative networks or subnetworks.

By conditions (4) and (5), while the free dynamics of a cell is not negatively perturbed
by external agents, and while the satisfaction variable Si of the cell i does not arrive to its
goal level, it strictly increases on time. In other words, each cell is “born optimist”: if free,
it approximates with positive velocity to its goal. Besides, the instantaneous velocity gi(xi)
is bounded away from zero, because minxi∈Xi gi(xi) > 0 exists, due to the compactness of
the space Xi and the continuity of gi. So, if free, each cell arrives to its goal after a finite
time. Nevertheless, if a negative term −δi < 0 is added to the real function gi, the velocity
dSi/dt will decrease, and may also become negative.

Definition 2.3 (Negative external interferences)
We call a negative number −δ < 0 negative differential interference to the cell i from

its external environment, if during an interval of time, the differential equation (4) is sub-
stituted by

dSi
dt

= gi(xi)− δ if 0 ≤ Si < θi. (11)

We call a negative number −∆ < 0 negative impulsive interference to the cell i from
its external environment, if at some instant t for which the satisfaction variable Si has not
arrived to its goal level, the state xi of the cell suffers a discontinuity jump such that

Si(xi(t)) = Si(xi(t
−))−∆.

Definition 2.4 (Death of a cell)
The death of a cell i (cf. [11]) occurs at an instant T ≥ 0, if for any time t > T the cell

i does not spike. In other words, after a cell i dies, it does not arrive to its goal anymore,
and so, it stops sending actions to the other cells of the network forever.

In Definition 3.7, we will state a numerical formula to measure the theoretical intrinsic
risk Ri of death of any cell under eventual negative interferences, if it were not connected
to the cooperative network. In Definitions 3.11 and 3.12, we pose formulae to measure the
net risk of death R′i < Ri, if the cell i is interacting in a cooperative network, and thus, the
protection factor Pi > 0 that the network provides to i.

Definition 2.5 (Space of parameters)
Let N be a network with m ≥ 2 fixed cells. The parameters of the network are:

Param(N ) :=

({(
θi, gi

)}
1≤i≤m

,
{

∆i,j

}
1≤i,j≤m, i 6=j

)
, (12)

where, according to Definition 2.1, gi is the given C1 real function in the second member
of the differential equation (4) which governs the free dynamics of the cell i; θi ∈ R+ is its
goal level; and ∆i,j ∈ R is the interaction in the network from the cell i to the cell j 6= i.

In the space of all the parameters of a network with exactly m cells (for m ≥ 2 fixed),
we define the topology induced by the following metric (distance), where the parameters
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of the networks N and N ′ are defined by Equality (12); those denoted without ′ (with ′)
correspond to the network N (resp. N ′):

dist
(

Param(N ), Param(N ′)
)

:=

max
{

max
1≤i≤m

{
|θi − θ′i|, ‖gi − g′i‖C1

}
, max

i 6=j
|∆i,j −∆′i,j |

}
. (13)

In the above equality, ‖ · ‖C1 is the C1 norm in the space of all the C1 real functions defined
on the compact manifold Xi.

We say that a phenomenon of the global dynamics is robust, or persistent, or structurally
stable if the set G of parameters of the networks for which the phenomenon occurs is open. In
other words, if a phenomenon is robust and if Param(N ) ∈ G, then Param(N ′) still belongs
to G for any sufficiently small perturbation N ′ of the network N (openness condition).

Definition 2.6 (Spiking instants and interspike intervals of the network)
We denote by {tn}n∈N+ the strictly sequence of all the instants for which at least one

neuron spikes. We call tn the n-th. spiking instant of the network. We call (tn, tn+1] the
n-th. interspike interval of the network and denote it by ISI(n).

Definition 2.7 (Clusters or spiking codes)
We denote by In the set of neurons that spike at the instant tn. We call In the n-th.

cluster or also, the n-th. spiking code.

3 Mathematical statements

Definition 3.1 (Spike-synchronization)
We say that the network eventually synchronizes spikes if there exists a subsequence

{tnh
}h∈N of spiking instants such that the respective clusters Inh

are {1, . . . ,m} (i.e. all the
cells spike at instants tnh

).

Definition 3.2 (Periodic spike-synchronization)
We say that all the cells of the network eventually periodically synchronize spikes with

period p ≥ 1, if there exists n0 ≥ 0 such that:

i) the subsequence {tnh
}h∈N of Definition 3.1 satisfies

tnh
= tn0+hp ∀ h ∈ N,

ii) the sequence {In}n≥0 of clusters satisfies

In = In+p ∀ n ≥ n0,

11



iii) the sequence {tn+1 − tn}n≥0 of the interspike intervals’ lengths satisfies:

tn+p+1 − tn+p = tn+1 − tn ∀ n ≥ n0.

We call p the natural spiking period of the network.

Note that the network eventually periodically synchronizes spikes, if and only if at least one
cell spikes at instant tn for all n ≥ 0, no cell spikes at instants t ∈ (tn, tn+1) for all n ≥ 0,
and all the cells spike at instants tn0+hp for any natural number h ≥ 0.

Definition 3.3 (Transitory time)
For each fixed initial state for which the network periodically synchronize spikes, we call

tn0 the waiting time or transitory time until the synchronization of the full network occurs.
Note that the occurrence of synchronization and the value of the waiting time depend

on the initial state of the network.

Let N be a network composed by m ≥ 2 fully cooperative cells (cf. Definition 2.2).
Recall that θj denotes the goal level of the cell j, and ∆i,j denotes the action from the cell
i to the cell j (cf. Definition 2.1).

Definition 3.4 (Large cooperative network)
A fully cooperative network is called large if

√
m > max

{√
3,

max{θj : j ∈ N}
min{∆i,j : i, j ∈ N , i 6= j}

+ 1
}
, (14)

Theorem 3.5 (Synchronization)
If N is a large fully cooperative network then:

(a) From any initial state, all the cells of the network N eventually periodically synchronize
spikes.
(b) The eventual periodic synchronization is a robust phenomenon.

We prove Theorem 3.5 in Subsection 4.1.

Theorem 3.6 (Upper bounds for the transitory time and the spiking period)
Under the hypothesis of Theorem 3.5, the transitory time T and the natural spiking

period p satisfy the following inequalities:

T ≤ max
1≤i≤m

{ θi
min {gi(xi) : xi ∈ Xi }

}
, (15)

p ≤ 1 +
max{θj : j ∈ N}

min{∆i,j : i, j ∈ N , i 6= j}
. (16)

12



We prove Theorem 3.6 in Subsection 4.2.

Now, we define the risk of death of each cell and the protection factor of the network.
In Definition 2.4 we say that a cell i dies if (due to external causes of the cell) there is

an instant T such that for all t > T the satisfaction variable Si remains smaller than the
goal level θi. In brief:

i dies ⇔ Si(xi(t)) < θi ∀ t > T for some T ≥ 0.

Due to the rules of the interactions among the cells, if a cell i dies, it can not act on the
network anymore (after time T ).

We measure the risk of death of the cell i by the following definitions:

Definition 3.7 (Intrinsic risk of death Ri)
The intrinsic risk of death Ri of the cell i, relatively to the other cells of the network is

defined by

Ri :=
θi

max
1≤j≤m

θj
, (17)

where m is the number of cells of the network. Since θi > 0 for all i, Equality (17)
immediately implies the following:

0 < Ri ≤ 1. (18)

Recall Definition 3.16: the n-th. spiking-code In is the (nonempty) set of cells that spike
at instant tn. Let us fix a cell i.

Definition 3.8 (Spiking instants of each cell).

The sequence {t(h)i }h≥1 of spiking times of the cell i is defined by the following equalities:

t
(1)
i := min{tn > 0 : i ∈ In} if i ∈ In for some n ≥ 0,

t
(1)
i := +∞ otherwise,

t
(h+1)
i := min{tn > t

(h)
i : i ∈ In} if i ∈ In for some tn > t

(h)
i ,

t
(h+1)
i := +∞ otherwise.

We denote
t
(0)
i := 0.

For each cell i and for each natural number h ≥ 1 such that t
(h)
i < +∞, we call t

(h)
i the

h-th. spiking instant or the h-th. milestone of the cell i. Note that a cell i dies if and only

if t
(h+1)
i = +∞ for some h ≥ 0.

Definition 3.9 (The inter-spike-intervals of each cell).
We call the time-interval

ISI
(h)
i :=

(
t
(h)
i , t

(h+1)
i

]
∀ h ≥ 0

the h-th. inter-spike-interval of the cell i. Note that we include the instant t
(h+1)
i in the

h-th. inter-spike-interval of the cell i.

13



When a cell i receives cooperative actions ∆j,i > 0 from the other cells j 6= i of the
network, then its satisfaction variable Si is increased, to approach (or even reach) its goal θi.
Equivalently, a positive action ∆j,i > 0 can be understood, as a reduction of the goal level
θi substituting it by θi−∆i,j . Roughly speaking, when a cell i receives positive interactions
from the other cells, its risk of death diminishes.

Definition 3.10 For each fixed cell i, and for each fixed natural number h ≥ 0, we denote:

∆
(h)
i,N :=

∑
j 6= i, j ∈ In, tn ∈ ISI

(h)
i

∆j,i, (19)

We call ∆
(h)
i,N the net action that the cell i receives during its h-th. inter-spike-interval

from the other cells of the network.

If the network is not cooperative, then some of the actions ∆j,i in Formula (19) may be
negative, so the sum of all of them may be negative or null. Note that, in general, the net

action ∆
(h)
i,N depends on the initial condition of the network.

Definition 3.11 (Net risk of death R′i)

The net risk of death R′
(h)
i,N of the cell i while connected to the network N , during its

h-th. inter-spike-interval, is

R′
(h)
i,N := max

{
0, min

{
1,

θi −∆
(h)
i,N

max
1≤j≤m

θj

}}
. (20)

In general the net risk of death R′
(h)
i,N depends on the initial condition. For simplicity

in the notation, in the sequel we will write R′i to denote the net risk of the cell i, when the
network N is clear from the context, and when referring to some fixed h ≥ 0.

Definition 3.12 (Protection factor Pi) The protection factor P
(h)
i,N of the network N to

its cell i, during the h-th. inter-spike-interval of i, is

P
(h)
i,N :=

∆
(h)
i,N
θi

. (21)

In the sequel, we will simply write Pi instead of P
(h)
i,N , when the network N is clear from

the context, and when referring to some fixed h ≥ 0.

Remark 3.13 From Equality (21), it is immediate to deduce that the protection factor Pi

is positive (negative) if and only if the minimum net sum of actions ∆
(h)
i,N that the cell i

receives from the other cells of the network is positive (resp. negative). Therefore, if the
network is fully cooperative, its protection factor is strictly positive, and if the network is
fully antagonist, its protection factor is strictly negative.
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In the following Proposition 3.14 we state that net risk R′i of a cell that is connected to
the network N , is (essentially) the product of its intrinsic risk Ri, if i were not connected
to the network, by 1− Pi.

In other words, if the protection factor Pi of the network were positive, then the net
risk R′i is smaller than the intrinsic risk of death, and if the protection factor Pi were 1,
then the net risk of death R′i would be zero. So, a cooperative network always reduces
the intrinsic risk, and may also make it zero, if the cooperative interactions are large and
frequent enough.

Proposition 3.14 (Formula of the protection factor of the network)

R′i := max
{

0, min
{

1,
(
1− Pi

)
Ri

}}
. (22)

We prove Proposition 3.14 in Subsection 6.1.

Theorem 3.15 (Protection factor)
Under the hypothesis of Theorem 3.5, the protection factor Pi of the network to each cell i
is positive. So, the net risk of death R′i of each cell i under negative external interferences,
when it is connected to the network, is strictly smaller than its intrinsic risk Ri when it is
isolated from the network.

We prove Theorem 3.15 in Subsection 6.2.

Definition 3.16 (Code-patterns)
For any natural number k ≥ 1, and for any fixed initial state

x(0) = (x1(0), . . . , xm(0))

of the network, we construct the following word of clusters with length k:

Πn,k := (In, . . . , In+k−1).

We call Πn,k the n−th. code-pattern with length k from the initial state x(0).

Definition 3.17 (Recurrent code-patterns)
We say that a code-pattern Πk with length k is recurrent, if there exists nj → +∞ such

that
Πnj ,k = Πk ∀ j ∈ N.

We denote by Pk the set of all the recurrent code-patterns with length k, obtained from all
the initial states of the network. We denote by

#Pk ≥ 1

the cardinality of the set Pk.
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Definition 3.18 (Amount of information)
We denote

H := sup
k≥1
{log2(#Pk)} bits ∈ [0,+∞], (23)

where log2 is the logarithm in base 2.
We call H the total amount of information that the network N is able to process.

Note that, since #Pk ≥ 1 for all k, then H ≥ 0.

Definition 3.19 (Entropy)
If H = +∞, we define the entropy h, or the exponential rate of increasing information,

by

h := lim sup
k→+∞

Hk

k
, where Hk := log2(#Pk).

Interpretation of the amount of information H. The number #Pk of different
recurrent patterns Πk with length k measures the dynamical richness of N , with respect
to the many possible finite words that the spiking-codes can show. Namely, H takes into
account how many different clusters In are exhibited at the milestones tn of the network.
Thus, the total amount of information H is a quantitative index of the maximum global
codified dynamical diversity that the network N is able to show along its recurrent evolution
in the future, if the observer looks at each cell with an individual role. In fact, note that if
i 6= j, then the event for which the cell i spikes and j does not, is distinguished from the
converse event.

Theorem 3.20 (Amount of information)
Under the hypothesis of Theorem 3.5, the total amount of information H of the network

is

H = log2 p ≤ log2

(
1 +

max{θj : j ∈ N}
min{∆i,j : i, j ∈ N , i 6= j}

)
.

We prove Theorem 3.20 in Section 5.

Definition 3.21 (Mutually similar cells)
We say that the cells of a fully cooperative network are mutually similar (with respect

to the minimum interaction) if:

(
min

1≤i≤m
θi

)(
min

1≤i≤m
min{gi(xi) : xi ∈ Xi}

)
(

max
1≤i≤m

θi

)(
max
1≤i≤m

max{gi(xi) : xi ∈ Xi}
) > 1− min{∆i,j : i, j ∈ N , i 6= j}

max
1≤i≤m

θi
, (24)

Theorem 3.22 (Cooperative networks of mutually similar cells) Under the hypoth-
esis of Theorem 3.5, if besides the cells are mutually similar, then

(a) From any initial state all the cells eventually periodically synchronize all their spikes
with natural spiking period p = 1.
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(b) After the transitory time T has elapsed, the protection factor Pi of the network to each
cell i is 1. So, its net risk of death R′i under negative external interferences is null.

(c) The total amount of information H of the network is zero

We prove Theorem 3.22 in Section 7.

Remark: In particular Inequality (24) - and thus, also the assertions (a), (b) and (c) of
Theorem 3.22 - holds if all the cells are mutually identical, i.e.

θi = θj = θ, gi = gj = g : X 7→ R+ ∀ i 6= j,

and if the minimum positive interaction is large enough, i.e.:

min{∆i,j : i, j ∈ N , i 6= j}
θ

> 1− min{g(x) : x ∈ X}
max{g(x) : x ∈ X}

.

Now let us pose a result about large cooperative networks whose graphs are not neces-
sarily complete.

Definition 3.23 (Full cooperative core)
Let N be a network. A full cooperative core in N , if it exists, is a subnetwork N1

composed by fully cooperative cells, i.e.

i ∈ N1 ⇒ ∆i,j > 0 ∀ j ∈ N ,

and such that all the cells that do not belong to N1 have non negative actions on the cells
of N , i.e.

i 6∈ N1 ⇒ ∆i,j ≥ 0 ∀ j ∈ N .

Corollary 3.24 (Networks with a large cooperative core.)
Let N be a network that has a full cooperative core N1. Assume that the number m of

cells in N1 is large enough. Precisely:

√
m > max

{√
3,

max{θj : j ∈ N}
min{∆i,j : i 6= j, i ∈ N1, j ∈ N}

+ 1
}
. (25)

Then Assertions of Theorems 3.5, 3.6, 3.15, 3.20 and 3.22 hold, where min{∆i,j : i, j ∈
N , i 6= j} must be substituted by min{∆i,j : i ∈ N1, j ∈ N , i 6= j}.

We prove Corollary 3.24 in Section 8.
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4 The proof of synchronization

In this section we prove Theorems 3.5 and 3.6. To do so, we need the following previous
result:

Lemma 4.1 (A) If from some initial state of the network there are two different (minimal)
instants 0 < t∗0 < t∗p when all the cells spike simultaneously, then the network eventually
periodically synchronizes spikes with some natural spiking period p ≥ 1.
(B) If from all the initial states the network eventually periodically synchronizes spikes
with the same period p ≥ 1, then the number of all the possible recurrent code-patterns with
length k ≥ 1 is

#Pk ≤ p ∀ k ≥ 1,

and
max
k≥1

(#Pk) = p.

(C) If from some initial state the network eventually periodically synchronizes spikes with
period p = 1, then, the sequence {In}n≥n0 of clusters is constantly equal to the set of all the
cells of the network, i.e.

In = {1, 2, . . . ,m} ∀ n ≥ n0.

(D) If from all the initial states the network eventually periodically synchronizes spikes
with period p = 1, then the number of all the possible recurrent code-patterns with length
k ≥ 1 is

#Pk = 1 ∀ k ≥ 1.

Proof: Assertions (C) and (D) are immediate consequences of (A) and (B) respectively, in
the particular case p = 1.

Let us prove Assertion (A). Recall that m ≥ 2 denotes the number of cells in the network.
By hypothesis, all the cells of the network spike at instants t∗0 > 0 and t∗p > t∗0. Thus,

due to the reset hypothesis in Definition 2.1, Formula (8), the state of the network at instant
t∗0, is

x(t∗0) = xreset :=
(
x1,reset, . . . , xi,reset, . . . , xm,reset

)
,

where xi,reset is the unique point in the state-space Xi that satisfies Equality (6). Thus

S(x(t∗0)) = 0, i.e. Si(xi(t
∗
0)) = 0 ∀ 1 ≤ i ≤ m.

As the dynamics defined by (3) is deterministic, once fixed the unique state xreset of the
network, a unique orbit exists in the future. Thus, translating the origin 0 of time to t∗0,
and recalling Equalities (3), we obtain:

S(x(t)) = S(x(t∗0 + (t− t∗0)) = S(Φ(Φ(x0, t
∗
0), t− t∗0)) ∀ t ≥ t∗0,

where Φ = (Φ1, . . . ,Φi, . . . ,Φm). Since Si(xi(t)) satisfies the differential equation (4) for all
t > t∗0 such that t 6= tn, and

S(Φ(x0, t
∗
0)) = 0,
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we have:
x(t∗0) = Φ(x0, t

∗
0) = xreset,

S(x(t)) = S(Φ(Φ(x0, t
∗
0), t− t∗0)) = S(Φ(xreset, t− t∗0)) = S(x∗(t− t∗0)) ∀ t ≥ t∗0,

where x∗ = (x∗1, . . . , x
∗
i , . . . , x

∗
m) is the unique solution x∗(·) = Φ(xreset, ·) of the determinis-

tic dynamical system (3) with initial state x∗(0) = xreset, plus the deterministic interactions’
rule (10)during the time-interval (t∗0, t

∗
p).

By the hypothesis, all the cells spike simultaneously again at the instant t∗p > t∗0. There-
fore, S(x(t∗p)) = S(x(t∗0)) = 0. Thus x(t∗p) = x(t∗0) = xreset. Then,

x(t∗p) = x∗(t∗p − t∗0) = xreset = x∗(0).

We deduce that the unique solution x∗ which has initial condition xreset, is periodic with
period t∗p − t∗0. Thus, the instants tn and the spiking-codes In are determined recursively
from the unique periodic orbit x∗. We deduce

In = In+p ∀ n ≥ n0. (26)

Also,

In0+hp = {1, 2 . . . ,m}, In ⊂6= {1, 2 . . . ,m} ∀ n0 +hp < n < n0 + (h+ 1)p, ∀ h ≥ 0, (27)

and the sequence {tn}n≥0 of instants for which at least one cell spikes satisfies:

tn+p+1 − tn+p = tn+1 − tn ∀ n ≥ n0. (28)

Equalities (26), (27) and (28) end the proof of Assertion (A) of Lemma 4.1.

Let us prove Assertion (B):
By Assertion (A), the sequence {In}n≥n0 is periodic with period p. Thus, from Definition
3.16, for any fixed natural number k ≥ 1, all the recurrent code-patterns with length k are:

(In0 , In0+1, . . . , In0+k−1), (In0+1, In0+2, . . . , In0+k), . . . ,

. . . , (In0+r, In0+r+1, . . . , In0+r+k−1), . . . ,

. . . , (In0+p−1, In0+p, . . . , In0+p+k−2)

(29)

with 0 ≤ r ≤ p− 1. In fact, for n = n0 + hp+ r ≥ p the code-pattern
(In, In+1, . . . , In+k−1) coincides with (In0+r, In0+r+1, . . . , In0+r+k−1), because In = In0+hp+r =
In0+r. So, all the code-patterns in the list (29) are recurrent. Two or more code-patterns
in the list (29) may coincide, so the number of different code-patterns with length k is at
most equal to the number of items in the list (29). Thus:

#Pk ≤ p ∀ k ≥ 1.

Now let us prove that, in the particular case that k = p, the code-patterns of the list (29)
are pairwise different. To prove this assertion, with no loss of generality, we assume n0 = 0
(if not, we translate the origin 0 of time to the instant tn0). Assume that

(Ir, Ir+1, . . . , Ir+p−1) = (Is, Is+1, . . . , Is+p−1) (30)
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for 0 ≤ r, s ≤ p− 1. We must prove that r = s.
The code-pattern I0 = {1, . . . ,m} will appear once in both patterns (30), because they

both have length p, which is the (minimum) period of the sequence {In}n≥1. Say I0 =
Ir+h = Is+k with 0 ≤ h, k ≤ p− 1.

Both patterns in Equality (30) coincide. Then the positions h and k are the same:

h = k.

Besides, since 0 ≤ r + h, s+ k ≤ p− 1 and 0 ≤ r, s ≤ p− 1, we have

|(r + h)− (s+ k)| = |r − s| ≤ p− 1 < p.

As I0 = Ir+h = Is+k, there are two indexes r + h and s+ k, whose difference is smaller
than p, such that the respective patterns coincide with I0 = {1, . . . ,m}. In other words, all
the cells spike at two instants tr+h and ts+k such that |(r + h)− (s+ k)| < p. But p is the
minimum positive natural number such that all cells spike at instants tn and tn+p for some
n. We deduce that r+h = s+ k. Since we already know that h = k, we deduce that r = s,
as wanted.

We conclude that all the code-patterns of the list (29) are pairwise different when the
length k equals the period p. Thus, the number of different code-patterns with length p is
p, ending the proof of Assertion (B) of Lemma 4.1. �

4.1 Proof of Theorem 3.5

Proof: Part a)
From Lemma 4.1, to prove that all the cells of the network eventually periodically

synchronize spikes, it is enough to prove that there exist two instants 0 < t0 < tp such that
all the cells simultaneously spike at t0 and at tp.

If for any initial condition we find a single instant t0 > 0 at which all the cells simulta-
neously spike, then, taking as new initial state x(t0)) = xreset, we deduce that there exists
a second instant tp > t0 at which all the cells simultaneously spike. Thus, to prove Part (a)
of Theorem 3.5, it is enough to show the following:

Assertion (i) to be proved: For any initial condition, there exists an instant t0 > 0 at
which all the cells simultaneously spike.

From any initial state x0 =
(
x1(0), . . . , xm(0)

)
such that 0 ≤ Si(xi(0)) < θi for all

1 ≤ i ≤ m, consider the state

x(t) =
(
x1(t), . . . , xi(t), . . . , xm(t)

)
,

and the m-dimensional vector whose components are the satisfaction variables Si(xi(t)) at
instant t > 0.

Since each variable Si is governed by the differential equation (4) with a strictly positive
real function gi : Xi 7→ R+ (which is continuous on the compact space Xi), plus the eventual
sum of interactions ∆j,i ≥ 0 according to Equalities (10), we deduce:
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Property (ii) While no interference from outside the network appears, for each cell i the
real variable Si is strictly increasing on t, for all t ≥ 0 such that Si(xi(t)) ∈

[
0, θi

)
. Besides,

except at those instants where Si is discontinuous, its derivative respect to time t exists, is
positive and bounded away from zero, and at the instants where Si is discontinuous, the
discontinuity jumps are positive.

We are assuming that Si(xi(0)) < θi. Thus, from Property (ii), we deduce:

Property (iii) For each cell i, there exists a first finite time ti > 0 such that limt→t−i
Si(xi(t)) =

θi. Namely, for any i ∈ {1, . . . ,m} there exists a first spiking instant ti > 0.

Consider the minimum natural number K ≥ 1 such that

K ≥ max{θj : j ∈ N}
min{∆i,j : i, j ∈ N such that i 6= j}

. (31)

From Inequalities (14) and (31), we deduce:

√
m > K. (32)

By hypothesis, θj > 0 for all 1 ≤ j ≤ m. Denote

0 < lj :=
θj
K
≤ θj ·

min
i 6=j

∆i,j

max
1≤j≤m

θj
≤ min

i 6=j
∆i,j . (33)

For later use, we note the following property:

If 1 ≤ h ≤ K − 1, then h lj =
h

K
θj < θj , (34)

and if h = K, then K lj =
K

K
θj = θj . (35)

Assume that at the instant t > 0, at leat K cells are spiking, where K ≥ 1 is the natural
number defined by Inequality (31). Then, for any other cell j ∈ {1, . . . ,m}, applying
Equalities (10), we have:

Sj(xj(t)) ≥ Sj(xj(t
−)) + K min

i 6=j
∆i,j ≥

≥
(

min
i 6=j

∆i,j

)
·

max
1≤j≤m

θj

min
i 6=j

∆i,j
= max

1≤j≤m
θj ≥ θj .

Thus, any cell j will also spike at instant t, because its satisfaction variable Sj(xj(t)) arrives
to the goal level θj . Summarizing, we have proved:

Property (iv) If at least K cells spike at an instant t > 0, then all the cells spike at the
instant t.
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Now, to end the proof of Assertion (i) it is enough to prove the following:

Assertion (v) to be proved: There exists an instant T > 0 such that at least K cells spike
simultaneously at T .

Let us take t1 > 0 equal to the first positive instant when at least one cell i1 arrives to
its goal level, i.e.

Si1(xi1(t1)
−) = θi1 for some i1 ∈ {1, . . . ,m}. (36)

Let us discuss according to two cases: either at least K cells spike at instant t1 with the
cell i1, or at most K − 1 do.

FIRST CASE: At least K cells spike at instant t1 > 0. Thus Assertion (v) holds.

SECOND CASE: At most K − 1 cells (and at least one cell i1) spike at instant t1. From
Inequality (32), there exist at least m− (K − 1) ≥ K2− (K − 1) ≥ 1 cells that do not spike
at instant t1. Denote by A1 this set of non spiking cells at instant t1. We have:

#A1 ≥ K2 − (K − 1) ≥ 1.

Using Inequality (7), for each cell j ∈ A1 we know that Sj(xj(t
−
1 )) ≥ 0. Since at instant t1

at least the cell i1 spikes, it sends a positive interaction ∆i1,j to any cell j ∈ A1. Applying
Inequalities (10) and (33), we deduce:

Sj(xj(t1)) ≥ Sj(t
−
1 ) + ∆i1,j ≥ min

i 6=j
∆i,j ≥ lj ∀ j ∈ A1.

In brief:
Sj(xj(t1)) ≥ lj ∀ j ∈ A1. (37)

Denote by t2 > t1 the first instant after t1 for which at least one cell i2 arrives to its goal
level.

Now, we discuss again two cases: either there exist at least K cells that spike at instant
t2 with the cell i2, or there exists at most K− 1 cells that so do. In the first case, Assertion
(v) holds. In the second case, denote by A2 ⊂ A1 the set of cells that did not spike at any
instant in [0, t2]. We have:

#A2 ≥ #A1 − (K − 1) ≥ K2 − 2(K − 1).

Since t2 > t1, applying Property (ii) and Inequalities (10) and (37), we obtain:

Sj(xj(t
−
2 )) > Sj(xj(t1)) ≥ lj ∀ j ∈ A2.

Since at least one cell i2 spikes at instant t2, it adds a positive jump ∆i2,j to Sj(xj(t
−
2 )) for

all j ∈ A2. Thus, using Inequality (33), we deduce:

Sj(xj(t2)) ≥ Sj(xj(t
−
2 )) + ∆i2,j ≥ lj + min

i 6=j
∆i,j ≥ 2lj ∀ j ∈ A2. (38)

By induction on h ∈ N+, if 2 ≤ h ≤ K, assume that th is the h-th. consecutive instant
th > th−1 such that at least one cell ih spikes, and no more than K − 1 cells have spiked
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simultaneously at each instant t1 < t2 . . . < th−1. Denote by Ah the set of cells that have
not spiked at those instants and also do not spike at instant th.

We have
#Ah ≥ m− h(K − 1) ≥ K2 − h(K − 1). (39)

Arguing by induction as in Inequality (38), we obtain:

Sj(xj(th)) ≥ h lj ∀ j ∈ Ah. (40)

For h = K, joining Inequality (40) and Equality (35), we deduce:

Sj(xj(tK)) ≥ θj ∀ j ∈ AK .

In other words, we have proved that, if at each instant t1 < t2 < . . . < tK−1, not more than
K− 1 cells spike simultaneously, then, at instant tK the value of Sj arrives to the goal level
θj , for any cell j ∈ AK . This implies that all the cells of AK spike simultaneously at instant
tK > 0. Besides, from Inequality (39) there exist at least K2 − K(K − 1) = K cells in
the set AK . So, we have proved that at least K cells spike simultaneously at some instant
t1 > 0 or t2 > t1 or . . . tK−1 or tK . This ends the proof of Assertion (v), as wanted, and
thus the proof of Part (a) of Theorem 3.5 is complete. �
Proof: Part b)

Since the hypothesis (14) is a strict inequality, it establishes an open condition in the
space of parameters of the network, endowed with the topology of Definition 2.5. Therefore,
the Inequality (14) joint with any dynamical property that is deduced from it, is a robust
phenomenon. In particular, due to Part (a) of Theorem 3.5, Inequality (14) joint with the
eventually periodic synchronization of the spikes, is a robust phenomenon. This proves
Assertion (b) of Theorem 3.5. �

4.2 Proof of Theorem 3.6

Proof: From the proof of Part (a) of Theorem 3.5, the waiting time T > 0 until the
spike-synchronization of all the cells occurs, equals the time that takes the latest cell, say
i, to arrive to its goal level θi from its initial state xi(0). The worst case occurs when the
initial state xi(0) of this slowest cell i is such that Si(xi(0)) takes its lowest possible value
0 (cf. Inequality (7)). Thus, to consider the worst case, we assume

Si(xi(0)) = 0.

Therefore T is smaller or equal than the time constant ti of the differential equation (4),
for the solution Si(xi(t)) with initial state Si(xi(0)) = 0, such that Si(xi(t

−
i )) = θi. This is

because during the time-interval [0, ti), some other cells j 6= i might have spiked. So they
might have injected non negative jumps ∆j,i to the instantaneous value of the variable Si
of the cell i.

Then, the worst case if when all those jumps are zero. Summarizing, we have

T ≤ ti
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and the worst case occurs if Si is only governed by the differential equation (4) for all
t ∈ [0, ti). Due to the mean value theorem of the differential calculus, there exists a time
τi ∈ [0, ti) such that:

dSi
dt

∣∣∣∣
t = τi

=
Si(xi(t

−
i ))− Si(xi(0))

ti
=
θi
ti
. (41)

Using the differential equation (4), we have:

dSi
dt

∣∣∣∣
t = τi

= gi(xi(τ)) ≥ min{gi(xi) : xi ∈ Xi}. (42)

Joining Equality (41) and Inequality (42), we obtain:

T ≤ ti ≤
θi

min{gi(xi) : xi ∈ Xi}
≤ max

i∈N

{ θi
min{gi(xi) : xi ∈ Xi}

}
,

proving the first assertion of Theorem 3.6.

Now, let us prove the second assertion of Theorem 3.6, finding an upper bound for
the natural spiking period p. We revisit the proof of Part (a) of Theorem 3.5. We have
defined the constant K as the minimum positive natural number that satisfies Inequality
(31). Thus:

K ≤ 1 +
max{θj : j ∈ N}

min{∆i,j : i, j ∈ N , i 6= j}
.

On the one hand, by Property (iv) in the proof of Part (a) of Theorem 3.5, if K cells spike
simultaneously at instant ti then all the cells spike simultaneously at instant ti. On the
other hand, at the end of the proof of Assertion (v), (second case), we found that from any
initial state, after at most K spikes of some cells (i.e. at instant tK as latest), there exist
K cells that spike simultaneously. We conclude that, once all the cells had simultaneously
spiked at instant t0, the minimum next instant tp > t0 for which all the cells spike again
simultaneously, is such that p ≤ K. Therefore:

p ≤ K ≤ 1 +
max{θj : j ∈ N}

min{∆i,j : i, j ∈ N , i 6= j}
,

ending the proof of Theorem 3.6. �

5 The proof of the amount of information

In this Section, we prove Theorem 3.20. We compute the total amount of information of
fully cooperative networks with a large number m of cells.
Proof: of Theorem 3.20

In Part (B) of Lemma 4.1 we have proved that

max
k≥0
{#Pk} = p,
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where p is the natural spiking period, i.e the period of the sequence {In}n∈N of spiking-
codes. Therefore, from Formula (23), the total amount of information H that the network
can generate or process is

H = sup
k≥0
{log2(#Pk)} = log2(sup

k≥0
{#Pk}) = log2(max

k≥0
{#Pk}) = log2 p.

(The first equality in the above chain holds because the real function log2(x) is increasing
on x ∈ R+.) We have proved that

H = log2 p,

which is the first assertion of Theorem 3.20. Now, let us prove the second assertion. We use
the upper bound of the natural spiking period p that was proved in Theorem 3.20, Formula
(16). We conclude that

H = log2 p ≤ log2

(
1 +

max
1≤j≤m

θj

min
i 6=j

∆i,j

)
,

ending the proof of Theorem 3.20. �

6 The proofs of results on the protection factor

In this section we prove Proposition 3.14 and Theorem 3.15.

6.1 Proof of Proposition 3.14

Proof: From Equalities (17) and (21), we obtain

(
1− Pi

)
Ri =

(
θi −∆

(h)
i,N

)
θi

θi

(
max

1≤j≤m
θj

) =
θi −∆

(h)
i,N

max
1≤j≤m

θj

From Equality (20), R′i = max
{

0, min
{

1,
θi −∆

(h)
i,N

max
1≤j≤m

θj

}
,

and thus: R′i = max
{

0, min
{

1,
(
1− Pi

)
Ri

}}
. �

6.2 Proof of Theorem 3.15

Proof: By hypothesis the network is fully cooperative. Thus, ∆j,i > 0 for all j 6= i. By
Equalities (19) and (21), the protection factor Pi of the network to each cell is positive.

Since Pi > 0, we obtain 1−Pi < 1. Applying Formula (22) of Lemma 3.14, and recalling
that 0 < Ri ≤ 1 -cf. Inequality (18)- we obtain:

R′i < max{0,min{1, Ri}} = Ri.

Therefore the net risk of death R′i of the cell i when interacting in the network is strictly
smaller than the intrinsic risk Ri that i would have if it were not connected to the network.
This ends the proof of Theorem 3.15. �
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7 Proof of the results on networks with similar cells

In this section we prove Theorem 3.22:
Proof: Part a) of Theorem 3.22

From Part (a) of Theorem 3.5, there exists a first instant t0 > 0 such that all the cells
spike simultaneously at t0. So, to proof Part (a) of Theorem 3.22 it is enough to show the
following assertion, under the additional hypothesis of Inequality (24):

Assertion (vi) to be proved. If at some instant t0 > 0 all the cells spike simultaneously,
and if t1 > t0 is the first instant after t0 when at least one cell spikes, then all the cells
spike simultaneously at t1.

Fix i, one of the cells that spike at instant t1 > t0. By hypothesis, the cell i has also
spiked at instant t0, but not during the inter-spike-interval (t0, t1). Then, applying the reset
rule (8), we have:

Si(xi(t0)) = 0

Since i also spikes at instant t1 > t0, we have:

Si(xi(t
−
1 )) = θi.

Therefore:
Si(xi(t

−
1 ))− Si(xi(t0)) = θi.

No cell spikes during the time-interval (t0, t1). Thus, Si is governed by the differential
equation (4) during such a time-interval. Applying the mean value theorem of the differential
calculus, there exists τi ∈ (t0, t1) such that:

dSi
dt

∣∣∣∣
t = τi

=
Si(xi(t

−
1 ))− Si(xi(t0))
t1 − t0

=
θi

t1 − t0
. (43)

Using the differential equation (4), and recalling that xi ∈ Xi, Xi is compact and g is
continuous, we obtain:

dSi
dt

= gi(xi) ≤ max{gi(xi) : xi ∈ Xi}. (44)

Joining Equality (43) and Inequality (44), we deduce:

t1 − t0 ≥
θi

max{gi(xi) : xi ∈ Xi}
≥

min
1≤i≤m

θi

max
1≤i≤m

max{gi(xi) : xi ∈ Xi}
. (45)

Now denote by j any cell. It spikes at instant t0. Then,

Sj(xj(t0)) = 0, 0 ≤ Sj(xj(t−1 )) ≤ θj .
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No cell spikes during the time-interval (t0, ti). Thus, Sj is governed by the differential
equation (4) during such an interval of time. Applying the mean value theorem of the
differential calculus, there exists τj ∈ (t0, t1) such that:

dSj
dt

∣∣∣∣
t = τj

=
Sj(xj(t1)

−)− Sj(xj(t0))
t1 − t0

=
Sj(xj(t1)

−)

t1 − t0
. (46)

From the differential equation (4), we deduce:

dSj
dt

= gj(xj) ≥ min{gj(xj) : 0 ≤ xj ≤ θj} ≥ min
1≤i≤m

min{gi(xi) : xi ∈ Xi}. (47)

Joining Inequalities (46) and (47), we deduce:

t1 − t0 ≤
Sj(xj(t

−
1 ))

min
1≤i≤m

min{gi(xi) : xi ∈ Xi}}
. (48)

Joining Inequalities (45) and (48), we obtain:

Sj(xj(t
−
1 )) ≥

(
min

1≤i≤m
min{gi(xi) : xi ∈ Xi}}

) (
min

1≤i≤m
θi

)
max
1≤i≤m

max{gi(xi) : xi ∈ Xi}

from where
Sj(xj(t

−
1 ))− θj ≥

≥

(
min

1≤i≤m
min{gi(xi) : xi ∈ Xi}}

) (
min

1≤i≤m
θi

)
(

max
1≤i≤m

max{gi(xi) : xi ∈ Xi}
) (

max
1≤i≤m

θi

) ·
(

max
1≤i≤m

θi

)
− θj ≥

≥ max
1≤i≤m

θi ·


(

min
1≤i≤m

min{gi(xi) : xi ∈ Xi}}
) (

min
1≤i≤m

θi

)
(

max
1≤i≤m

max{gi(xi) : xi ∈ Xi}
) (

max
1≤i≤m

θi

) − 1

 (49)

By hypothesis, Inequality (24) holds. So, the factor at right (between large parenthesis) in
Inequality (49) is bounded from below by −(mini 6=j ∆i,j)/max1≤i≤m θi. We deduce:

Sj(xj(t
−
1 ))− θj ≥ −min

i 6=j
∆i,j ,

from where
Sj(xj(t

−
1 )) + min

i 6=j
∆i,j ≥ θj . (50)

Since at instant t1 the cell i spikes, it sends an action ∆i,j to each cell j. From Inequality
(50), and from the interaction rule in Equalities (10), we get:

Sj(xj(t1)) = Sj(xj(t
−
1 )) + ∆i,j ≥ Sj(xj(t−1 )) + min

i 6=j
∆i,j ≥ θj .
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Therefore, the variable Sj of any cell j arrives to its goal level θj at the instant t1. Thus,
any cell j spikes at t1, and Assertion (vi) is proved. This ends the proof of Part (a) of
Theorem 3.22. �
Proof: Part b) of Theorem 3.22

First, let us prove that the protection factor Pi of the network to each cell i, according
to Definition 3.12, satisfies

min{1, Pi} = 1 (to be proved). (51)

In fact, by Formula (19) the net sum of the actions ∆
(h)
i,N that the cell i receives from the

other cells of the network during its h-th. inter-spike-interval (t
(h)
i , t

(h+1)
i ] is

∆
(h)
i,N =

∑
j 6= i, j ∈ In, tn ∈ (t

(h)
i , t

(h+1)
i ]

∆j,i (52)

By Part (a) of Theorem 3.22, all the cells synchronize spikes after a transitory time T . So,

for all h ≥ 1 such that t
(h+1)
i ≥ T , all the cells belong to In for the spiking time tn = t

(h+1)
i .

Thus, in Equality (52) the sum at right is realized in j ∈ {1, . . . ,m} such that j 6= i. Then,

∆
(h)
i,N =

∑
j 6= i

∆j,i ≥ (m− 1) min
j 6=i

∆j,i, (53)

where m is the number of cells of the network. By hypothesis, Inequality (14) holds.
Therefore m ≥ 3, which implies m− 1 ≥

√
m. We deduce that:

m− 1 ≥
max
1≤i≤m

θi

min
j 6=i

∆j,i
.

Substituting in (53), we obtain: ∆
(h)
i,N ≥ max

1≤i≤m
θi ≥ θi. Thus,

∆
(h)
i,N
θi
≥ 1. Now, we apply

Formula (21): Pi =
∆

(h)
i,N
θi

≥ 1, and thus Equality (51) is proved.

Second, we apply Lemma 3.14. From Equalities (22) and (51), and Inequality (18), we
deduce:

R′i = max
{

0, min{1, (100− Pi)Ri }
}

= max{0, (1− Pi)Ri} = 0,

ending the proof of Part (b) of Theorem 3.22. �
Proof: Part c) of Theorem 3.22

From Part (a) of Theorem 3.22, under the additional hypothesis stated by Inequality
(24), the period p of the sequence {In}n∈N of spiking-codes is p = 1. From Theorem 3.20,
we know that the total amount of information H that the network can generate of process
is log2 p. Therefore, H = log2 p = log2 1 = 0, as wanted. �
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8 Proof of Corollary 3.24

(Large full cooperative core)
Proof: Since by hypothesis, the number m of cells of the core N1 satisfies Inequality (25),
we can repeat all the arguments in the proof of Part (a) of Theorem 3.5 in Subsection 4.1,
by substituting the network N by the core N1. So, we deduce that there exists a strictly
increasing sequence {tn}n≥0 of instants tn → +∞, and a natural period p ≥ 1, such that:

At least one cell of N1 spikes at each instant tn, for all n ≥ 0.
No cell of N1 spikes in the open time-intervals (tn, tn+1).
All the cells of N1 spike simultaneously at the instant thp for all h ≥ 0.

Therefore, to prove the eventual periodic synchronization of the whole network N , it is
enough to prove that the cells of N spike altogether at each instant t such that all the cells
of the core N1 spike.

In fact, we repeat, with slight changes, the proof of Property (iv) in Subsection 4.1: We
define the minimum natural number K ≥ 1 such that

K >
max{θj : j ∈ N}

min{∆i,j : i ∈ N1, j ∈ N , i 6= j}
.

Due to Inequality (25), the number m of the core N1 satisfies
√
m > K. (54)

Now, we repeat the same arguments of the proof in Subsection 4.1, starting at Equality
(33) and ending just before Property (iv): Substituting mini 6=j ∆i,j by

min{∆i,j : i ∈ N1, j ∈ N , i 6= j}, (55)

we deduce
Property (iv)’: If at least K cells of the core N1 spike at instant t > 0, then all the cells of
the network N spike at instant t.

Since at instant thp all the m cells of the core N1 spike, and m ≥ 3 satisfies Inequality
(54), we obtain:

m >
√
m > K.

We conclude that the cells of the network spike altogether at instants thp for all h ≥ 0.
Thus, the whole network periodically synchronizes spikes from any initial state (after a
finite transitory time).

Once we have proved the periodic synchronization of the network, the proof of the other
assertions under the hypothesis of Corollary 3.24, follow the same arguments in the proofs
of Sections 4, 5 and 6, after substituting mini 6=j ∆i,j by the expression (55). �
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