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Abstract

We prove that topologically generic orbits of C0, transitive and non-uniquely

ergodic dynamical systems, exhibit an extremely oscillating asymptotical statis-

tics. Precisely, the minimum weak∗ compact set of invariant probabilities that

describes the asymptotical statistics of each orbit of a residual set contains all

the ergodic probabilities. If besides f is ergodic with respect to the Lebesgue

measure, then also Lebesgue-almost all the orbits exhibit that kind of extremely

oscillating statistics.
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1 Introduction

We will study the statistical average for typical orbits of transitive dynamics, under
a non traditional viewpoint.

On the one hand, the traditional viewpoint studies the limit in the future of
the Birkhoff averages, starting always from the same initial point, and for Lebesgue-
positive sets of orbits in the future. So, under this traditional viewpoint, the “statis-
tics” of the system (at least for C2-dynamical systems with some kind of hyperbolic-
ity), is mainly obtained from the existence of physical measures, of Sinai-Ruelle-Bowen
(SRB) measures, and of Gibbs measures (see for instance the survey [3]).

Relevant advances on the study of the asymptotic behavior of the time-averages
from the traditional viewpoint can be found for instance in the following articles. In
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[8] Viana and Yang study the existence of physical measures for partially hyperbolic
systems with one-dimensional center direction. Bonatti’s survey [2] gives an overview
of the state of art in the theme of the asymptotical dynamics of C1-differentiable
systems from the topological viewpoint. In [5] Liverani proves that piecewise C2

expanding maps may exhibit Gibbs measures without needing the bounded distortion
property.

On the other hand, instead of adopting the traditional viewpoint, along this paper
we will study the-time averages that start at any future iterate of the initial point.
This viewpoint is based on a philosophical argument: the way that the observers in
the future will perceive the forward statistics of the system, is not the way that it
is computed today. In fact, today the observers compute the Birkhoff average along
the finite future piece orbit of length n (which we like to call “the clima”), by the
mean value of the observable functions from time 0 to n. But the observers in the
future -who will live, say, at time m > 0- will compute their Birkhoff average along
the finite piece of orbit of length n (i.e. they will perceive their clima), by the mean
value of the observable functions between time m and time m+ n.

This non-traditional viewpoint of studying the Birkhoff averages and their limits
(i.e. the statistics) does not give preferences to different initial observation instants.
So, our conclusions include also the prediction of “all the climas ” that the observers
in the future will perceive.

The key result is Theorem 2:
Topologically typically, the clima observed at infinitely many times in the future

must widely differ from the clima observed at present time, provided that the dynamics
is deterministic (non hazardous), transitive and non-uniquely ergodic.

This is an unexpected result, taking into account that the system is autonomous
and deterministic. Nevertheless, the idea of the proof of Theorem 2 is extremely
simple. The route of its proof is the result of joining the following three simple
observations. First, if the system is transitive, then its topologically generic orbits in
the future are dense. Second, for any ergodic measure µ, and for any µ-typical point
x0, the Birkhoff average starting at x0 converges to µ. So, for any ǫ > 0, for any
fixed n sufficiently large, and for any point x close enough x0, the Birkhoff average
starting at x is ǫ-near µ.Third, any dense orbit in the future has such an iterate x
close enough x0.

Thus, one concludes that the Birkhoff averages, with fixed n but starting at dif-
ferent points in the future of the same orbit, oscillate among all the ergodic measures
of f , when n → +∞.

Even if the main theorem is the consequence of the latter simple observations,
and no more proof than the above argument would be needed, we will include all the
details of this proof (see Section 3) to be readable by a wide class of scientists and
students.
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1.1 Mathematical background

Let M be a compact manifold of finite dimension. Let f : M 7→ M be continuous.
We consider the dynamical system obtained by iteration of f in the future, i.e. the
family of orbits {fn(x)}n∈N with initial condition x ∈ M . This dynamical system is
composed by the solutions of the recurrent equation xn+1 = f(xn).

We denote by M the space of all the probability measures in M , endowed with
the weak∗ topology (see for instance Definition 6.1 of [7]). That is, if µn is a sequence
of probability measures in M , we define

limµn = µ ∈ M if and only if lim
n→+∞

∫

ϕdµn =

∫

ϕdµ ∀ ϕ ∈ C0(M,R), (1)

where C0(M,R) is the space of continuous real functions in M , with the supremum
norm.

Recall that a measure µ ∈ M is invariant by f if µ(f−1(A)) = µ(A) for any Borel-
measurable set A ⊂ M . We denote by Mf ⊂ M the space of f -invariant probability
measures, and by Ef ⊂ Mf the set of ergodic probability measures for f .

We recall that µ ∈ Mf if and only if
∫

ϕdµ =

∫

ϕ ◦ f dµ ∀ ϕ ∈ C0(M,R).

(See for instance Theorem 6.8 of [7]).
To each initial state x ∈ M , or equivalently to each orbit {fn(x)}n∈N, we asso-

ciate the double-indexed sequence {σ(m,n)(x)}(m,n)∈N2 of non necessarily invariant
probability measures σm,n(x), which we call empirical probabilities, defined by:

σm,n(x) =
1

n

m+n−1
∑

j=m

δfj(x), (2)

where δy is the Dirac-Delta probability measure supported on the point y ∈ M . In
other words, the empirical probability σm,n(x) is the probability distribution that is
observed during a statistical experiment on which one computes the Birkhoff average
(i.e. the temporal average) of the observable functions ϕ : M 7→ R along a finite piece
of the orbit of x, from time m to time m+ n− 1. Precisely:

1

n

m+n−1
∑

j=m

ϕ(f j(x)) =

∫

ϕdσm,n(x). (3)

We agree to call the double-indexed sequence {σm,n(x)}(m,n)∈N2 of empirical proba-
bilities the complete future statistics of the orbit of x. For the sake of concision we
call it the statistics of x.
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Since the space M is metrizable and weak∗-compact, it is sequentially compact
(see for instance Theorems 6.4 and 6.5 of [7]). Thus, any sequence {σm(n),n(x)}n∈N of
empirical probabilities has convergent subsequences when n → +∞.

We agree to call the set of all limit probability measures of all such sequences of
empirical probabilities in M, the asymptotical statistics of the orbit of x (Definition
2.1).

1.2 Statement of the results

If f : M 7→ M preserves the Lebesgue measure m and is ergodic, then the sequence
{σ0,n(x)}n∈N is convergent for Lebesgue-almost all x ∈ M (see for instance Theorem
6.12 (ii) of [7]). In other words, its limit set is a singleton. Also, if there exists a
unique physical measure whose basin of statistical attraction covers Lebesgue almost
all the points, or if there exists a unique SRB-like measure, then the limit set of the
sequence {σ0,n(x)}n∈N is a singleton for Lebesgue-almost all x ∈ M (see [4]).

In contrast, if instead of restricting to the case m(n) = 0, we consider all the
sequences of the form {σm(n),n(x)}n∈N where m : N 7→ N, then the limit set may be
non convergent, and moreover, extremely oscillating (see Definition 2.3). In fact, in
this paper we prove the following result:

Theorem 1 Let f : M 7→ M be continuous, preserving the Lebesgue measure of M
and ergodic with respect to it, but non uniquely ergodic. Then Lebesgue-almost all the
orbits of f have extremely oscillating asymptotical statistics. Precisely, it contains all
the ergodic probability measures of f .

Let us state a similar result that holds for maps that do not preserve the Lebesgue
measure. In Theorem 3.6 of [1], Abdenur and Andersson studied the limit set of
the sequence {σ0,n(x)}n∈N for Lebesgue-almost all the orbits of C0-generic maps.
Such generic systems do not preserve the Lebesgue measure. They proved that the
particular sequence {σ0,n(x)}n∈N of empirical probabilities is convergent for Lebesgue-
almost all x ∈ M . So, its limit set is a singleton.

Now, for transitive and non-uniquely systems, we observe all the sequences

{σm(n),n(x)}n∈N with any m : N 7→ N,

instead of restricting to the case m(n) = 0. Let us apply a topological criterium
instead of a Lebesgue-probabilistic criterium when selecting the “relevant” orbits of
the system. With such an agreement, we say that an orbit is generic if it belongs to
a residual set in M . Then the asymptotical statistics is far from being a singleton: it
is extremely oscillating. In fact, we prove the following result:
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Theorem 2 Let f : M 7→ M be continuous, transitive and non uniquely ergodic.
Then generic orbits of f have extremely oscillating asymptotical statistics. Precisely,
any ergodic probability for f belongs to the asymptotical statistics of each generic
orbit.

Theorems 1 and 2 imply the necessary extremely changeable “clima”, i.e. the time
averages of the observable functions along finite pieces of all the relevant orbits in
the ambient manifold M vary so much in the long term, to approach all the extremal
invariant probabilities of the system (the ergodic measures). Even if the system is
fully deterministic and it is governed by an autonomous and unchangeable recurrence
equation, even if the parameters in this equation are fixed, even if the states along the
deterministic orbit are not perturbed, no topologically relevant orbit of the system
has a predictable statistics along its long-term future evolution. On the contrary, its
asymptotical statistics is extremely changeable in the long-term future, exhibiting at
least, as many probability distributions as ergodic measures of f exist.

This paper is organized as follows: In Section 2 we state the precise mathemat-
ical definitions to which the results refer, and in Section 3 we include the proofs of
Theorems 1 and 2.

2 Definitions

Since the double-indexed sequence of empirical probabilities {σm,n(x)}(m,n)∈N2 com-
pletely describes de statistics (i.e. the time-average) of any finite piece of the orbit of
x, the limit set as(x) in the space of probabilities describes what we call the asymp-
totical statistics of the orbit, according to the following definition:

Definition 2.1 (Asymptotical statistics as(x) in the space of probabilities)
The asymptotical statistics of the orbit of x ∈ M , which we denote by as(x), is the

set composed by all the limits in M of the convergent subsequences of any sequence
{σm(n),n(x)}n∈N of empirical probabilities of x, where m : N 7→ N is any mapping from
the set of natural numbers to itself. Precisely:

as(x) := {µ ∈ M : ∃ {mi, ni}i∈N ⊂ N
2 such that ni → +∞ and lim

i→+∞
σmi,ni

(x) = µ}

(4)
Following the classical Krylov-Bogolioubov construction of invariant probabilities (see
for instance the proofs of Theorems 6.9, 6.10, and Corollary 6.9.1 of [7]), it is standard
to check that:

as(x) 6= ∅, as(x) is weak∗-compact, and as(x) ∈ Mf ∀ x ∈ M.

In other words, the asymptotical statistics of x is a nonempty compact set of proba-
bility measures which are invariant by f .
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Definition 2.2 (Convergent or oscillating asymptotical statistics)
The orbit {fn(x)}n∈N is statistically convergent if its asymptotical statistics is

composed by a unique probability measure, i.e.

#(as(x)) = 1.

It is statistically oscillating if it is non convergent.

We recall that f is called uniquely ergodic if #Ef = 1 (see for instance [6]).

Definition 2.3 (Extremely oscillating asymptotical statistics)
When f is non-uniquely ergodic we say that the orbit {fn(x)}n∈N is statistically

extremely oscillating if its asymptotical statistics contains all the f -invariant ergodic
probability measures. Namely:

as(x) ⊃ Ef , #Ef > 1.

Definition 2.4 (Transitive system) The dynamical system by iterates of f : M 7→
M is called transitive if for any pair (U, V ) of nonempty open sets in M there exists
a positive iterate of U that intersects V .

Let us denote T (M) to the topology of M , i.e. the family of all the open sets of
M . So, f : M 7→ M is transitive, by definition, if

∀ (U, V ) ∈ T (M)× T (M) if U, V 6= ∅, then ∃ n ∈ N
+ such that fn(U) ∩ V 6= ∅,

where N
+ denotes the set of positive integer numbers. Equivalently,

∀ (U, V ) ∈ T (M)× T (M) if U, V 6= ∅, then ∃ n ∈ N
+ such that f−n(V ) ∩ U 6= ∅.

Recall that M is a finite dimensional manifold. So, f : M 7→ M is transitive if and
only if there exists x ∈ M whose orbit in the future is dense in M .

Definition 2.5 (Residual sets and generic orbits)
According to Baire-category theory a set R ⊂ M is said residual if it contains a

countable intersection of open and dense subsets of M . It is standard to check that
the countable intersection of residual sets is residual. Since M is a compact manifold,
any residual set R is dense, but not all dense sets are residual.

Given a residual set R ⊂ M we say that the orbits
{

{fn(x)}n∈N : x ∈ R
}

are

generic.
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3 The proofs

The weak∗ topology of the space M of probability measures is metrizable (see for
instance Theorem 6.4 of [7]). We choose and fix a weak∗-metric in M, which we
denote by dist.

To prove Theorems 1 and 2 we first state the following lemmas:

Lemma 3.1 Let f : M 7→ M be continuous and Mf denote the space of f -invariant
probability measures. Let µ ∈ Mf . Let x ∈ M and let as(x) ⊂ Mf be the asymptotical
statistics of the orbit of x, according to Definition 2.1. Then

µ ∈ as(x) if and only if x ∈ A(µ), where

A(µ) =
⋂

ǫ>0

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < ǫ}
)

(5)

Proof: From equality (4), µ ∈ as(x) if and only if:

lim
i→+∞

σmi,ni
(x) = µ

for some sequence {mi, ni}i∈N ⊂ N
2 such that ni → +∞. This condition holds if and

only if for any ǫ > 0 there exists i0 ∈ N such that

dist(σmi,ni
(x), µ) < ǫ ∀ i > i0.

Since limni = +∞, for any N ≥ 1 there exists i1 ∈ N such that ni ≥ N for all i > i1.
We deduce that

ni ≥ N and dist(σmi,ni
(x), µ) < ǫ ∀ i > max{i0, i1}.

In other words, µ ∈ ae(x) if and only if for all ǫ > 0 and all N ≥ 1, the point x
belongs to the set

⋃

m≥0

⋃

n≥N

{x ∈ M : dist(σm,n(x), µ) < ǫ}.

From equality (2) note that

σm,n(x) = σ0,n(f
m(x)).

Then
dist(σm,n(x), µ) < ǫ ⇔ dist(σ0,n(f

m(x)), µ) < ǫ ⇔

x ∈ f−m
(

{y ∈ M : dist(σ0,n(y), µ) < ǫ}
)

.
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We have proved that, µ ∈ ae(x) if and only if for all ǫ > 0 and all N ≥ 1, the point
x belongs to the set

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < ǫ}
)

.

We conclude that x ∈ Aµ, where the set Aµ is defined by equality (5), ending the
proof. �

Lemma 3.2 If µ is ergodic, then for all ǫ > 0 there exists N ∈ N such that

{y ∈ M : dist(σ0,n(y), µ) < ǫ} is nonempty and open ∀ n ≥ N.

Proof: We take any continuous real function ϕ ∈ C0(M,R). By Birkhoff Ergodic
Theorem and from the definition of ergodicity (see [7]), we have

lim
n→+∞

1

n

n−1
∑

j=0

ϕ(f j(y)) =

∫

ϕdµ µ− a.e. y ∈ M.

From equality (3) we obtain

lim
n→+∞

∫

ϕdσ0,n(y) =

∫

ϕdµ µ− a.e. y ∈ M.

The last equality holds for all ϕ ∈ C0(M,R). So, by the condition (1) which defines
the weak∗ topology in the space M of probability measures, we deduce:

lim
n→+∞

σ0,n(y) = µ µ− a.e. y ∈ M.

Therefore, for µ−a.e. y ∈ M , for all ǫ > 0 there exists N ≥ 1 such that

dist(σ0,nσ(y), µ) < ǫ ∀ n ≥ N.

We conclude that

{y ∈ M : dist(σ0,n(y), µ) < ǫ} 6= ∅ ∀ n ≥ N.

Now, it is left to prove that, for fixed ǫ > 0, fixed µ ∈ M, and fixed n ∈ N,
the set {y ∈ M : dist(σ0,n(y), µ) < ǫ} is open in the ambient manifold M . Since
{ν ∈ M : dist(ν, µ) < ǫ} is open in the space of probability measures, it is enough
to check that the mapping:

σ0,n : M 7→ M
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is continuous. So, let us prove that for any convergent sequence {xi}i∈N ⊂ M , the
image sequence {σ0,n(xi)}i∈N ⊂ M converges to σ0,n(x) in the weak∗ topology, where

x = lim xi ∈ M.

To apply condition (1) we consider any continuous real function ϕ ∈ C0(M,R).
From equality (3)

lim
i→+∞

∫

ϕdσn,0(xi) = lim
i→+∞

1

n

n−1
∑

j=0

ϕ(f j(xi)).

Since ϕ ◦ f j is continuous and lim xi = x we have

lim
i→+∞

1

n

n−1
∑

j=0

ϕ(f j(xi)) =
1

n

n−1
∑

j=0

ϕ(f j(x)) =

∫

ϕdσn,0(x).

We deduce that

lim
i→+∞

∫

ϕdσn,0(xi) =

∫

ϕdσn,0(x) ∀ ϕ ∈ C0(M,R).

From condition (1) we conclude the following equality in the space M of probability
measures:

lim
i→+∞

σn,0(xi) = σn,0( lim
i→+∞

xi),

showing that the mapping σn,0 is continuous, and ending the proof of Lemma 3.2. �

To prove Theorem 1, we first state the following:

Lemma 3.3 Let f : M 7→ M be continuous, preserve the Lebesgue measure m, be
ergodic with respect to m and be non-uniquely ergodic. If µ is an ergodic probabil-
ity measure for f , then the set Aµ defined by equality (5) of Lemma (3.1) has total
Lebesgue measure. Thus, µ ∈ as(x) for Lebesgue almost all x ∈ M .

Proof: Denote by m the Lebesgue measure of the manifold M , after a rescaling to
make m(M) = 1.

From Lemma 3.2, for all ǫ > 0 there exists n0 ≥ 1 such that

{y ∈ M : dist(σ0,n, µ) < ǫ} is nonempty and open ∀ n ≥ n0,

Thus
⋃

n≥N

{y ∈ M : dist(σ0,n, µ) < ǫ} is nonempty and open ∀ ǫ > 0, ∀ N ≥ 1.
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Define
BN(ǫ) :=

⋃

m≥0

f−m
(

⋃

n≥N

{y ∈ M : dist(σ0,n, µ) < ǫ}
)

=

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n, µ) < ǫ}
)

. (6)

We conclude that BN(ǫ) is a nonempty open set in M . By construction f−1(BN (ǫ)) ⊃
BN(ǫ). Since the Lebesgue measure m is ergodic, we deduce that

m(BN(ǫ)) = 0 or m(BN (ǫ)) = 1.

But the set BN(ǫ) is nonempty and open, and the Lebesgue measure is positive on
nonempty open sets. So

m(BN (ǫ)) = 1, from where we obtain m
(

⋂

N≥1

BN(ǫ)
)

= 1 ∀ ǫ > 0.

So, taking ǫ = 1/k, k ∈ N
+ we deduce that

x ∈
⋂

k≥1

⋂

N≥1

BN(1/k) m− a.e. x ∈ M.

Note that if 0 < ǫ < ǫ′ then BN (ǫ) ⊂ BN (ǫ
′), and for any ǫ > 0 there exists k ∈ N

+

such that ǫ < 1/k. Thus

⋂

ǫ>0

⋂

N≥1

BN (ǫ) ⊂
⋂

k≥1

⋂

N≥1

BN(1/k).

But the converse inclusion is obvious because for all k ∈ N
+, we obtain particular

values of ǫ = 1/k > 0. Thus

⋂

ǫ>0

⋂

N≥1

BN(ǫ) =
⋂

k≥1

⋂

N≥1

BN(1/k).

In brief, we have proved that

x ∈
⋂

ǫ>0

⋂

N≥1

BN(ǫ) m− a.e. x ∈ M.

Substituting BN by its expression in equality (6) we conclude:

x ∈
⋂

ǫ>0

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n, µ) < ǫ}
)

m− a.e. x ∈ M.
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Finally, applying Lemma 3.1 we conclude

µ ∈ as(x) m− a.e. x ∈ M,

as wanted. �

End of the proof of Theorem 1.

Proof: Fix ǫ = 1/(2k) with k ∈ N
+. Since the space M of probability measures is

weak∗- compact, the closure Ef is compact. So, there exist a finite covering

Ck := {B1/k(µ1,k), . . . ,B1/k(µl(k),k)} (7)

of Ef with open balls B1/k(µi,k) ⊂ M of radius 1/k and centered in µi,k. Since the
radius 1/k > 0 is fixed, it is not restrictive to take µi,k ∈ Ef for all i ∈ {1, 2, . . . , l(k)}.

Since µi,k is ergodic for f , we can apply Lemma 3.3, to deduce that the following
set

Hk :=

l(k)
⋂

i=1

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µi,k) < 1/(2k)}
)

⊂ M (8)

has total Lebesgue measure.
Take any µ ∈ Ef . Since Ck covers Ef there exists µi,k such that dist(µ, µi,k) <

1/(2k). Therefore, by the triangle inequality:

{y ∈ M : dist(σ0,n(y), µi,k) < 1/(2k)} ⊂ {y ∈ M : dist(σ0,n(y), µ < 1/k} ∀ n ∈ N.

We deduce that

Hk ⊂
⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < 1/k}
)

∀ µ ∈ Ef k ∈ N
+. (9)

Since Hk has full Lebesgue measure, then the set

H =
⋂

k≥1

Hk

also has full Lebesgue measure. From (9) we have

H ⊂
⋂

k≥1

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < 1/k}
)

∀µ ∈ Ef . (10)

We deduce that for Lebesgue-almost all x ∈ M , the following assertion holds for any
ergodic measure µ:

x ∈
⋂

k≥1

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < 1/k}
)
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Since for any ǫ > 0 there exists k ≥ 1 such that 1/k < ǫ, we have

x ∈
⋂

ǫ>0

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < ǫ}
)

.

Applying Lemma 3.1, we deduce that µ ∈ as(x). We have proved that for Lebesgue-
almost all x ∈ M any ergodic measure µ belongs to as(x). After Definition 2.3, the
asymptotical statistics of the orbit of x is extremely oscillating. We conclude that
Lebesgue-almost all the orbits exhibit extremely oscillating asymptotical statistics,
as wanted. �

Now, to prove Theorem 2, we state the following:

Lemma 3.4 If f : M 7→ M is continuous and transitive and if µ is an ergodic
invariant measure for f , then the set Aµ defined in Lemma 3.1 is residual. Thus,
µ ∈ as(x) for generic x ∈ M .

Proof:
From Lemma 3.2, for all ǫ > 0 the set

UN =
⋃

n≥N

{y ∈ M : dist(σ0,n, µ) < ǫ} is nonempty and open ∀ ǫ > 0, ∀ N ≥ 1.

Consider the set BN (ǫ) ⊂ M defined by equality (6):

BN(ǫ) =
⋃

m≥0

f−m(UN(ǫ)).

Since f is continuous and transitive, from Definition 2.4 we obtain that, for any
nonempty open set V ⊂ M , there exists m ≥ 1 such that fm(V ) ∩ UN(ǫ) 6= ∅. In
other words, BN (ǫ) is dense in M . So BN is open and dense.

So, taking ǫ = 1/k, k ∈ N
+ and applying Definition 2.5, we deduce that

R :=
⋂

k≥1

⋂

N≥1

BN (1/k) is residual in M.

Applying again Definition 2.5:

x ∈
⋂

k≥1

⋂

N≥1

BN (1/k) for generic x ∈ M.

For all ǫ > 0 there exists k ∈ N such that ǫ < 1/k, and thus

BN (ǫ) ⊃ BN(1/k),
⋂

N≥1

BN(ǫ) ⊃ R ∀ ǫ > 0.
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We deduce that
⋂

ǫ>0

⋂

N≥1

BN(ǫ) ⊃ R,

is also residual in M . In other words

x ∈
⋂

ǫ>0

⋂

N≥1

BN (ǫ) for generic x ∈ M.

Substituting BN(ǫ) by its expression in equality (6) we conclude:

x ∈
⋂

ǫ>0

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n, µ) < ǫ}
)

for generic x ∈ M.

Finally, applying Lemma 3.1 we conclude µ ∈ as(x) for generic x ∈ M, as wanted. �

End of the proof of Theorem 2.

Proof: Fix ǫ = 1/(2k) with k ∈ N
+ and construct the finite covering Ck of Ef by

equality (7), and the set Hk defined by equality (8). Since the measures µi,k are
ergodic for f , we can apply Lemma 3.4, to deduce that the set Hk is residual for all
k ∈ N

+.
Take any µ ∈ Ef . Since Ck covers Ef there exists µi,k such that dist(µ, µi,k) <

1/(2k). Therefore, by the triangle inequality, we deduce assertion (9).
Since Hk is residual, then the set H =

⋂

k≥1Hk is also residual. From (9) we have

H ⊂
⋂

k≥1

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < 1/k}
)

∀µ ∈ Ef .

We deduce that for generic x ∈ M , the following assertion holds for any ergodic
measure µ:

x ∈
⋂

k≥1

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < 1/k}
)

Since for any ǫ > 0 there exists k ≥ 1 such that 1/k < ǫ, we have

x ∈
⋂

ǫ>0

⋂

N≥1

⋃

m≥0

⋃

n≥N

f−m
(

{y ∈ M : dist(σ0,n(y), µ) < ǫ}
)

.

Applying Lemma 3.1, we deduce that µ ∈ as(x). We have proved that for generic
x ∈ M any ergodic measure µ belongs to as(x). After Definition 2.3, the asymptotical
statistics of the orbit of x is extremely oscillating. We conclude that the generic orbits
of f exhibit extremely oscillating asymptotical statistics, as wanted. �
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