
Empir Software Eng (2014) 19:378–417
DOI 10.1007/s10664-013-9267-7

Effectiveness for detecting faults within and outside
the scope of testing techniques: an independent
replication

Cecilia Apa ·Oscar Dieste ·Edison G. Espinosa G. ·
Efraín R. Fonseca C.

Published online: 8 August 2013
© Springer Science+Business Media New York 2013

Abstract The verification and validation activity plays a fundamental role in improv-
ing software quality. Determining which the most effective techniques for carrying
out this activity are has been an aspiration of experimental software engineering
researchers for years. This paper reports a controlled experiment evaluating the
effectiveness of two unit testing techniques (the functional testing technique known
as equivalence partitioning (EP) and the control-flow structural testing technique
known as branch testing (BT)). This experiment is a literal replication of Juristo et al.
(2013). Both experiments serve the purpose of determining whether the effectiveness
of BT and EP varies depending on whether or not the faults are visible for the
technique (InScope or OutScope, respectively). We have used the materials, design
and procedures of the original experiment, but in order to adapt the experiment to
the context we have: (1) reduced the number of studied techniques from 3 to 2;
(2) assigned subjects to experimental groups by means of stratified randomization
to balance the influence of programming experience; (3) localized the experimental

Communicated by: Jeffrey C. Carver, Natalia Juristo, Teresa Baldassarre and Sira Vegas.

C. Apa
Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay
e-mail: ceapa@fing.edu.uy

O. Dieste
Universidad Politécnica de Madrid, Boadilla del Monte 28660, Madrid, Spain
e-mail: odieste@fi.upm.es

E. G. Espinosa G.
Escuela Politécnica del Ejército Sede Latacunga, Latacunga, Ecuador
e-mail: egespinosa1@espe.edu.ec

E. R. Fonseca C. (B)
Escuela Politécnica del Ejército, Sangolquí, Ecuador
e-mail: erfonseca@espe.edu.ec



Empir Software Eng (2014) 19:378–417 379

materials and (4) adapted the training duration.We ran the replication at the Escuela
Politécnica del Ejército Sede Latacunga (ESPEL) as part of a software verification
& validation course. The experimental subjects were 23 master’s degree students.
EP is more effective than BT at detecting InScope faults. The session/program and
group variables are found to have significant effects. BT is more effective than EP at
detecting OutScope faults. The session/program and group variables have no effect
in this case. The results of the replication and the original experiment are similar
with respect to testing techniques. There are some inconsistencies with respect to
the group factor. They can be explained by small sample effects. The results for
the session/program factor are inconsistent for InScope faults. We believe that these
differences are due to a combination of the fatigue effect and a technique x program
interaction. Although we were able to reproduce the main effects, the changes to
the design of the original experiment make it impossible to identify the causes of
the discrepancies for sure. We believe that further replications closely resembling
the original experiment should be conducted to improve our understanding of the
phenomena under study.

Keywords Replication ·Experiment ·Unit testing ·Reporting guidelines

1 Introduction

Verification and validation (V&V) activities play a fundamental role in improving
software quality. There are many approaches for carrying out V&V, but we do not
know for certain which technique or combination of techniques is more effective for
each type of software validation: unit, integration or system testing.

Determining the effectiveness of unit testing techniques soon attracted the at-
tention of experimental software engineering (SE) researchers. Way back in 1978,
Myers compared the effectiveness of functional and structural testing techniques
(Myers 1978). Soon after, Basili and Selby studied the effectiveness of functional
and structural techniques and code reading (Basili and Selby 1985), and started up a
much replicated family of experiments.

In this paper, we report the replication of a controlled experiment belonging to
Basili’s family. The original experiment was conducted at the Universidad Politéc-
nica de Madrid (UPM) in December 2005. According to Gómez et al. (2010) and
Gómez (2012), this replication can be classified as a literal (that is, the replication
resembles the original experiment as closely as possible), joint (some of the original
experimenters participated in the replication) and external (the replication was
conducted at a different site) replication of the original experiment. The replication
was conducted at the Escuela Politécnica del Ejército Sede Latacunga (ESPEL) in
Ecuador in December 2011.

The purpose of conducting the replication was to verify the results of the original
experiment, and, in the event of inconsistencies, identify which factors or parameters
could explain the differences between the experiments. The alternative, if this were
not possible, would be to conduct further replications. Another goal of this paper was
to use Carver’s guidelines (Carver 2010) and evaluate their strengths for reporting
replications.

Following Carver’s guidelines, the paper describes information about the original
study in Section 2, details information about the replication in Section 3, compares



380 Empir Software Eng (2014) 19:378–417

the replication results to the original results in Section 4 and, finally, reports the
conclusions across studies in Section 5.

2 Information About the Original Study

The original experiment was carried out by Juristo et al. (2013). Its aim was to study
how effective structural and functional testing techniques are at detecting faults.
Juristo et al.’s (2013) experiment is, in turn, a differentiated replication of the family
of experiments started by Basili and Selby (1985, 1987) in 1982, and later replicated
by several researchers like Kamsties and Lott (1995) and Wood et al. (1997). The
main difference between the original experiment and Basili’s family of experiments
lies in the way in which the faults were seeded in the programs.

Basili, Selby and others referred to the types of faults used in their experiments
as fairly representative of the defects that tend to occur in software development
(Basili and Selby 1987). Therefore, those experiments evaluated how effective the
testing process is expected to be in practice. However, the fault types used in
Juristo et al.’s (2013) experiment were simpler. They can be divided into two major
categories: faults that can and faults that, at least in theory, cannot be detected by the
structural or functional test case generation strategy (InScope and OutScope faults,
respectively).

The differentiation of the two fault types is useful for studying the effectiveness
of the testing techniques more precisely than before, as it helps to distinguish the
effect of the actual technique (that is, the detection of InScope faults) from the
positive effects that the technique has on the tester but that cannot be attributed
to the technique per se (that is, OutScope faults). Both effects were confounded in
previous experiments.

2.1 Research Questions

The original experiment report does not include an explicit research question.
However, this question can be easily inferred from the experimental design. It can
be stated in GQM (Basili 1992) as follows:

Analyse the application of software testing techniques for the purpose of finding
out how effective they are at unit testing level with respect to different fault types
(InScope, OutScope) from the point of view of testers in the context of a controlled
experiment in academia.

This research question is useful for identifying the key elements of the original
experiment.

(A) Main Factor: The original experiment studied two testing techniques: the
functional testing technique known as equivalence partitioning (EP) and the
control-flow structural testing technique known as branch testing (BT).
The original experiment also tests another technique: code reading by stepwise
abstraction technique (CR). As CR is capable of detecting all fault types, it is
used in the original experiment for the purpose of control not as a main factor.
According to the original experimenters (Juristo et al. 2013), “As a control
group, we have used a technique (the CR technique) with a strategy capable, at
least in theory, of detecting all program faults”.



Empir Software Eng (2014) 19:378–417 381

(B) Response Variables: Technique effectiveness was measured as the percentage
of faults located by the techniques over the total seeded faults. As the research
question is concerned with InScope and OutScope faults, the effectiveness of
the techniques was calculated separately for each fault type.

(C) Hypotheses:

H10: There is no difference in the effectiveness of EP, BT and CR with
respect to the detection of faults within their scope.

H11: The effectiveness of EP, BT and CR differs with respect to faults within
their scope.

H20: There is no difference in the effectiveness of EP, BT and CR with
respect to the detection of faults outside their scope.

H21: The effectiveness of EP, BT and CR differs with respect to faults
outside their scope.

2.2 Participants

The subjects participating in the experiment were 46 Universidad Politécnica de
Madrid undergraduate computing engineering students. The students were taking
the 4th-year software verification and validation course as part of their five-year
degree programme. Students had little or no professional experience of software
development.

2.3 Design

As a between-subjects design with a total of 46 experimental subjects would result in
very few subjects per group (46/3 � 15) and low statistical power, the authors of the
original study used a within-subjects design, where each subject applied each of the
tested techniques at three different times (sessions). Sessions had no set time limit,
and each session lasted on average four hours. Table 1 summarizes the experimental
design.

Although the within-subjects design increases statistical power, it also poses
several validity threats. For example, carryover, learning effects (maturation) and
fatigue are a possibility:

(a) Carryover:The residual effect that administering one treatment to a subject has
on another treatment administered later to the same subject, where the residual

Table 1 Original experiment design

Program Cmdline Ntree Nametbl

Session Session 1 Session 2 Session 3

Techniq. CR BT EP CR BT EP CR BT EP

Group 1 X – – – X – – – X
Group 2 X – – – – X – X –
Group 3 – X – – – X X – –
Group 4 – X – X – – – – X
Group 5 – – X X – – – X –
Group 6 – – X – X – X – –



382 Empir Software Eng (2014) 19:378–417

effect increases or decreases the effectiveness of the later treatment, is known as
carryover (Brown 1980). Carryover is an important risk in medical experiments,
as drug residues can remain in the body for quite some time and interact with
later treatments (Senn 2002). It is harder to imagine what underlying cause
could produce a carryover effect in SE. However, carryover has been explicitly
cited in the SE literature (Kitchenham et al. 2003) and hence should be taken
into account.

(b) Learning: Subject performance may increase irrespective of the applied treat-
ments as a result of practice acquired in successive experimental sessions.

(c) Fatigue: Subject performancemay drop as a result of fatigue caused by applying
treatments at short intervals in successive experimental sessions.

To minimize all these threats, the sessions were held one week apart. Even so, as
shown in Table 1, the original experimenters added the session and group variables
to the design in order to determine whether such threats materialize. Specifically, ac-
cording to the original experimenters, the session variable can identify the presence
of learning or fatigue effects, and the group variable can detect carryover effects.

2.4 Artefacts

Several artefacts were used to operationalize the original experimental design:

– Training materials to improve or consolidate subject knowledge of the tech-
niques under study

– Experimental objects on which to apply techniques
– Experimental materials to support experimental task performance.

The above-mentioned artefacts are described in the following. They are all
available at Juristo et al. (2013), with the exception of the programs and fault
descriptions. This is meant to assure that students participating in the experiments
are not acquainted with them beforehand. However, programs and fault descriptions
are available from the original experimenters via email.

2.4.1 Training Materials

The material used to train subjects on the application of the software testing
techniques under study includes:

– Reference guide:Document containing the theoretical foundations and practical
exercises for training experimental subjects in the application of software testing
techniques.

– Slides: Support material for the trainer containing a summary of the reference
guide.

– Training programs: Material used to supplement the theoretical groundwork,
focusing on acquainting experimental subjects with the experiment execution
environment.

2.4.2 Experimental Objects

For testing technique application, there should be at least as many programs
as sessions, seeded with the right faults, because subjects cannot test the same



Empir Software Eng (2014) 19:378–417 383

program with the same faults twice. The programs and faults used in the original
experiment were:

(A) Programs: Three programs written in C were used: cmdline, nametbl and
ntree. These are the same programs that were used in experiments run by
Kamsties and Lott (1995) or Roper et al. (1997). As these programs are likely
to affect (increase or decrease) the effectiveness of techniques, the programs
were considered as blocking variables for analysis purposes. These programs
perform the following functions:

(a) Cmdline parses a command line to determine whether it is valid. If it is,
it displays a description of the input command line; if it is not, it specifies
why it is incorrect. Note that the program does not execute any of the
commands, but merely validates the input.

(b) Nametbl reads and processes file commands to test a series of functions
used to manage an abstract data type, specifically a particular program-
ming language symbol table.

(c) Ntree reads and processes file commands to test a series of functions used
to manage an abstract data type, specifically an n-ary tree.

(B) Faults: As mentioned earlier, different fault types were seeded in the original
experiment than were used in earlier experiments (e.g.: Kamsties and Lott
1995; Roper et al. 1997).
The foremost difference between the original experiment and earlier exper-
iments is the InScope and OutScope fault categorization for EP or BT. An
InScope fault is a fault that can be detected by a correctly applied technique;
faults are classed as OutScope otherwise.
Thus, for example, unimplemented parts of the specif ication, is a possible exam-
ple of a fault that EP can detect (InScope). EP is capable of revealing this fault
type because it generates test cases for all program specifications, including
non-implemented specifications. Alternatively, code for functionalities that are
not in the specif ication (e.g. when a programmer has mistakenly written or
copied code that implements functions not accounted for in the specification)
is an example of a fault that BT can detect. Branch testing’s strategy prescribes
that test cases should be generated to cover all the alternatives of 100 % of the
code decisions, in which case it should detect superfluous code.
In order to systematically seed programs with faults, faults would have to have
been classified by technique sensitivity. However, the original experimenters
were unable to find any such classification, and they therefore generated the
necessary fault types, shown in Table 2.

Table 2 Fault types (FT) FT Description

1 Unimplemented specification
2 Specific test data for achieving coverage
3 Combination of invalid equivalence classes
4 Chosen combination of valid equivalence classes
5 Test data for combining classes
6 Implementation detail
7 Implementation of unspecified functionality



384 Empir Software Eng (2014) 19:378–417

Each of the fault types proposed by Juristo et al. (2013) are further
detailed below.

(a) Unimplemented specification: The program does not implement the code for a
particular specification. The BT technique is unable to identify this fault type,
whereas EP will generate test cases capable of revealing this type of faults.

(b) Specific test data for achieving coverage: The program does not cover all the
values specified in the requirements. The BT technique protocol does not
indicate which data to select to assure that the test cases cover code decisions,
whereas EP will generate test cases capable of detecting this fault type.

(c) Combination of invalid equivalence classes: Faults entered in programs by
adding code that does not comply with the program specification. BT is capable
of detecting this fault type, but EP is not.

(d) Chosen combination of valid equivalence classes: Unnecessary functionalities
added to the code, which are already covered by another program specification.
BT is capable of detecting this fault type, whereas EP is not.

(e) Test data for combining classes: Coding faults caused by the inclusion of
functionalities that are not stated in the specifications. EP is not always able
to detect this fault type, because, although the EP strategy prescribes that test
cases should cover all the identified equivalence classes, it does not state exactly
which class data should be selected for the test case. On the other hand, BT will
generate test cases to detect this fault type.

(f) Implementation detail: Faults entered by programmers as a result of the choice
of programming strategy to comply with the program specification. EP is unable
to find this fault type, whereas BT can generate test cases capable of discovering
such faults.

(g) Implementation of unspecified functionality: The program implements a func-
tionality that is not in the specification. The EP technique is unable to identify
this fault type. On the other hand, if applied correctly, BT will reveal such faults.

The programs were each seeded with six faults of the seven fault types. Three
of these faults (called F1-F3) were InScope faults for EP, and the other three (F4-
F6) were InScope faults for BT. Remember that the faults that are InScope for one
technique areOutScope for the other, and vice versa. Table 3 details the faults seeded
in each program.

2.4.3 Experimental Materials

The material used to execute the experiment includes the program specifications,
experimental data collection forms, source code listing with seeded faults, executable
code with seeded faults and guidelines for executing the experiment.

2.5 Context Variables

The original experiment explicitly considered the following contextual variables:

– Environment:Academia
– Subject type:Undergraduate students
– Experience: Students with little or no professional software development

experience



Empir Software Eng (2014) 19:378–417 385

Table 3 Faults seeded in
programs

Technique FT F1 F2 F3 F4 F5 F6

Cmdline
EP 1 X X

2 X
BT 3 X

4 X
5 X

Nametbl
EP 1 X

2 X X
BT 3 X

5 X
7 X

Ntree
EP 2 X X X
BT 3 X

5 X
6 X

– Program type: Small-sized programs (150–220 LOC), with cyclomatic complexi-
ties ranging from 21 to 61

– Program language: C.

2.6 Execution Procedure

The original experiment was executed in three clearly defined stages, which the
original experimenters called pre-session, during-session and post-session.

2.6.1 Pre-session

The pre-session is the stage of the experiment during which experimental subjects
receive training on how to apply the testing techniques. The materials to be used to
execute the experiment are also prepared at this stage. These materials, available in
Juristo et al. (2013), are as follows:

– Experimental objects
– Forms
– Guides

2.6.2 During-Session

This is the stage during which the experiment proper is executed. The subjects take
their places, far enough apart so that they cannot copy, in a room equipped for
the purpose. Subjects will have been randomly assigned to groups before the first
session. This assures that experimenters deliver the right materials to subjects during
the session.

The first phase of the experimental session is test case generation. To do this, the
subjects applying EP are supplied with:
– Experimental object specification (specification of the cmdline, nametbl or ntree

program)



386 Empir Software Eng (2014) 19:378–417

– Data collection forms for recording the test case and the expected output of each
test case.

For the BT technique, subjects are supplied with:

– Source code listing with seeded faults in order to generate the test cases
– Data collection forms for recording the test cases and the expected output of

each test case.

Note that none of the experimental subjects are given executable code during the
test case generation phase, as the subjects might be tempted to read the programs
instead of generating test cases to detect faults. This would frustrate the purpose of
the experiment, which is to test how effective testing techniques, not software testers,
are at detecting faults.

After they have generated the test cases, they are given:

– Executable code with seeded faults
– Data collection forms for recording the observed output of each test case

execution
– The program specifications in order to test the generated cases
– Data collection forms for recording the detected faults.

The experimental subjects are not allowed to add any other test cases once they
have been given the executable code at the end of the test case generation stage. This
is controlled by the person responsible for monitoring the experiment execution.

Finally, the subjects fill the respective form with the outputs observed during the
execution of each test case. The program faults are inferred from the comparison of
the observed outputs with the expected outputs.

2.6.3 Post-Session

During this stage, all the material used by the experimental subjects is collected,
and the data collection forms containing the test cases designed by the experimental
subjects are detached for analysis. To do this, the test cases generated by the subjects
are compared with previously designed test case templates. This analysis reveals
the faults discovered by each subject applying each technique. This is not a strict
comparison protocol, and test cases containing some sort of formal error that, with a
minor correction, would generally identify faults are rated positively.

2.7 Summary of Results

Repeated measures ANOVA (rANOVA) was used to analyse the results, where
the technique (BT, EP, CR), the program (ntree, cmdline, nametbl) and the group
(six groups, termed G1-G6) were considered as factors. The sessions were not
explicitly considered as factors, as they were confounded with the programs. The
session/program and technique factors were considered as within-subjects factors,
whereas the group factor was treated as a between-subjects factor. The fitted model
was strictly additive and took the form:

Y = TECHNIQUE + PROGRAM +GROUP + e

The results obtained by the original experimenters can be summarized as follows.



Empir Software Eng (2014) 19:378–417 387

2.7.1 InScope Response Variable

The rANOVA provided significant results for all factors: technique, program/session
and group:

(A) Technique: The significant rANOVA result leads to the null hypothesis being
rejected. Pairwise comparison showed that the code reading technique was
less effective than the equivalence partitioning and branch testing techniques.
In actual fact, code reading detected approximately 54 % of faults, whereas
branch testing and equivalence partitioning detected 67.67 and 78.70 % of the
seeded faults, respectively.

(B) Program/session: The significant rANOVA result suggests that either the
program or the session influences effectiveness, but, as they are confounded,
there is no way of reliably telling which one really has a bearing. Although the
program/session interaction could theoretically have an effect, it is unlikely
to do so because there is no reason why a program should increase the
effectiveness of a session or vice versa.
The pairwise comparison reveals that cmdline<nametbl<ntree (we use the
“<”symbol to indicate that subjects are less effective for cmdline than for
nametbl and so on for all other variables). Alternatively, S1<S3<S2. The
differences are only significant for cmdline/S1 and ntree/S2. As the design type
used confounds the session and program variables, there are three possible
grounds for the observed results: learning, fatigue or the possibility of one
program being easier to test than another. If there were a learning effect,
we should observe S1<S2<S3. If there were a fatigue effect (very unlikely,
however, as the sessions were held one week apart), we should find that
S3<S2<S1. Consequently, the program rather than the session is more likely
to have a bearing on effectiveness.

(C) Group: As already mentioned, the group factor was introduced to detect the
presence of carryover, as the original experiment had a within-subjects design.
Pairwise comparison reveals significant differences of effectiveness among the
sequences EP-CR-BT and EP-BT-CR and BT-CR-EP with respect to the
order in which the techniques were applied. With a fault detection rate of
82.41 %, the EP-CR-BT sequence was more effective than the EP-BT-CR
and BT-CR-EP sequences with rates of 55.55 and 57.41 %, respectively. As
there are some significant differences between some levels of this factor but
not between others, the original experimenters claimed that there does not
appear to be any carryover effect from one technique to another.

2.7.2 OutScope Response Variable

The rANOVA provided significant results for all the factors: technique, pro-
gram/session and group.

(A) Technique: The significant rANOVA result leads to the null hypothesis being
rejected. Pairwise comparison shows that the equivalence partitioning tech-
nique was less effective (14.12%) than the branch testing technique (29.09%).

(B) Program/session: In this case again, the rANOVA result is significant and sug-
gests that either the program or the session influences effectiveness. Because
the program and session are confounded, there is no way of reliably telling
which has a bearing on effectiveness.



388 Empir Software Eng (2014) 19:378–417

The pairwise comparison shows that cmdline<nametbl (or, in session terms,
S1<S3). Ntree (or S2) does not have significant differences with respect to the
other two programs (sessions). This difference of effectiveness between S1 and
S3 could be attributed to the session and not to the program. However, the
results on technique effectiveness for Inscope faults, plus the fact that there
are no statistical differences between S3 and S2, led the original experimenters
to conclude that it is the program and not the session that makes the difference.
As for the InScope faults, there would again be no learning effect.

(C) Group: Pairwise comparison reveals significant differences of effectiveness
among sequences EP-CR-BT (8.33%), and CR-BT-EP and EP-BT-CR (35.42
and 36.11 %, respectively) only with respect to the order in which the tech-
niques were applied. As with the InScope variable, the original experimenters
claimed that there does not appear to be any carryover effect improving
technique effectiveness for faults outside their scope due to the order of
technique application.

3 Information About the Replication

The replication was conducted at the Escuela Politécnica del Ejército sede Latacunga
(ESPEL), Ecuador, with Master in Software Engineering students taking a software
verification and validation course. The duration of this course is 80 h divided into
seven, 10-h face-to-face sessions and a 10-h off-campus period set aside for home-
work and academic administrative matters. The face-to-face sessions were divided
into three stages. In the first stage, the first part of the theoretical groundwork of the
training was taught across three consecutive sessions. This was followed by a three-
day break. Then the second stage (two consecutive sessions) covered the second
theoretical part and training exercises. The third stage was the replication, which
was run across two consecutive sessions as of the following day. The replication was
one of the course assessment tests that carried most weight. This was done purposely
to assure that students were motivated.

3.1 Motivation for Conducting the Replication

Themain reason for conducting a replication was to confirm the results of the original
experiment or, in the event of inconsistencies, identify the factors and parameters
that might have caused such inconsistencies. This could, if necessary, trigger another
replication cycle. The independent experiment replication should, secondarily, help
to improve our competence at applying empirical methods in SE research.

3.2 Level of Interaction with the Original Experimenters

There was a lot of interaction with the original experimenters in the phases prior to
the execution of the experimental replication. The replication was executed without
the involvement of the original experimenters. Finally, the original experimenters
played a very minor role in data collection and analysis.

(A) At the start of the replication we had to gain a profound understanding
of the original experiment. For this purpose we held several meetings with



Empir Software Eng (2014) 19:378–417 389

the original experimenters. Once we had a thorough understanding of the
experiment, the next step was to adapt the design of the original experiment
to the context where the replication was to be carried out. As a result of
this adaptation, we generated a design document, which was validated by the
original experimenters. Finally, we were given the artefacts of the original
experiment.

(B) We did not have any interaction with the original experimenters during the
preparation of the trainingmaterials, training proper and replication execution.

(C) After we had executed the replication, the original experimenters explained
the procedure for identifying whether or not a test case reveals a fault from the
questionnaires completed by each experimental subject.

3.3 Changes to the Original Experiment

Generally speaking, the replication is quite true to the original experiment in all re-
spects. The hypotheses, factors, faults, response variable, materials and experimental
procedure are all unchanged, save the following exceptions:

– We have eliminated one of the main factor levels. Specifically, we did not test
the code reading technique, primarily because it was impossible to run three
experimental sessions in the time available for running the replication.

– As we have omitted one of the techniques, one of the three sessions and one
of the three programs are unnecessary. In fact, we have omitted the cmdline
program and reduced the number of sessions from three to two.

– We have altered the order in which the programs were used in order to study
whether it is the program or the session that influences technique effectiveness.

– We have run the replication with a group of experimental subjects that have
different characteristics than the subjects of the original experiment.

– We have applied stratified randomization (Kernan et al. 1999) to assign subjects
to experimental groups in order to assure balanced groups.

– We have adapted the training to the time constraints of the course on which the
replication was run.

– We have localized the experimental materials to the dialectal differences of
Ecuadorian Spanish.

Table 4 summarizes the changes. The changes are described in more detail in
the following.

3.3.1 Changes to the Main Factor Levels

According to the software verification and validation course schedule, only two days
were available for running the experiment, whereas three days (one per session) had
been spent on the original experiment. We had two options in this respect:

1. Squeeze two experimental sessions into one day.
2. Eliminate one of the technique factor levels.

A third option, which meant splitting a session across two days, was rejected
outright as there was a risk of the intermission affecting student performance or
simply of students swapping notes.



390 Empir Software Eng (2014) 19:378–417

Table 4 Differences between UPM and ESPEL

Activity Characteristic UPM ESPEL

Design Randomization Normal Stratified
Sessions 3 2
Main factor CR, BT, EP BT, EP
Programs cmdline, ntree, nametbl nametbl, ntree
Groups 6 2
Dialectal differences in Castilian Spanish Ecuadorian Spanish
materials

Recruitment Number 46 23
Type Undergraduate students Master’s students
Professional experience Generally inexperienced Yes

Training Training type Face-to-face Semi-distance
Duration 12 h 50 h

Execution Duration 3 sessions, unlimited 2 sessions, unlimited
time time

Finally, we went for the second of the two options. The fact that the sessions were
scheduled for two consecutive days (Saturday and Sunday) went against the first
option: it would have been very demanding on students to take part in three sessions
without a break, and the resulting fatigue could have had a negative influence on the
results. Also, the fact that the original experiment really tested the functional and
structural techniques, whereas code reading was primarily a control technique, and
therefore optional, favoured the second option.

Consequently, the factor levels were the functional testing technique known as
equivalence partitioning (EP) and the control-flow structural testing technique known
as branch testing (BT), each applied in one session by two groups of experimental
subjects (Group 1 and Group 2). Table 5 shows the resulting experimental design.

3.3.2 Changes to the Secondary Factor Levels

The omission of one the testing techniques (code reading) makes one of the three
sessions unnecessary. Consequently, it was also necessary to eliminate one of the
programs used in the original experiment. We left out the cmdline program for two
key reasons:

1. Experimental subjects stated, during the original experiment and other experi-
ments of the same family (Juristo and Vegas 2003), that the cmdline programwas
a harder to understand and test than ntree and nametbl. Testing techniques are
generally less effective on cmdline, suggesting that this program is more complex,
as discussed in Section 2.7.

2. The ntree and nametbl programs are similar to each other (146-172 LOC
and a cyclomatic complexity of 21-29, respectively), and both are different to

Table 5 Replication design Session Session 1 Session 2

Program Nametbl Ntree

Technique BT EP BT EP

Group 1 X – – X
Group 2 – X X –



Empir Software Eng (2014) 19:378–417 391

cmdline (209 LOC and a cyclomatic complexity of 61). cmdline’s high cyclomatic
complexity is a possible explanation for it being harder to test.

In the original experiment (see Table 1), the cmdline program was used in Session
1, whereas ntree and nametbl were used in Sessions 2 and 3, respectively. This would
apparently signify that the sessions in the original experiment and the replication
are not comparable, as they are associated with different programs. However, this
should not be a problem as there is unlikely to be any relationship between session
and program, as already stated.

3.3.3 Change to the Order of Program Use

As discussed in Section 2.7, the analysis is unable to distinguish whether the effects
are due to either factor because program/session are confounded. This is a peculiarity
of the cross-over design used in the original experiment. In this replication, they are
again confounded because we adhere to the original design. On this ground, we have
decided to change the order in which the programs are used from ntree then nametbl
in the original experiment to nametbl then ntree in the replication. By comparing
the original and replicated experiment, we expect to be able to identify whether the
possible effects are really due to the program or the session.

3.3.4 Change to Population Type

The subjects of the original experiment at the UPM were undergraduate stu-
dents, most of whom had little or no professional experience. On the other
hand, the subjects of the replication at ESPEL were master’s students, many of
whom did have professional programming, architectural design or other software
development experience.

Because of their higher academic and professional level, the marginal means of
ESPEL subjects should be greater than for UPM subjects. However, this should
not affect the comparisons between factors and treatments, as the implemented
stratified randomization (see Section 3.3.5) assures that the experimental groups
are homogeneous.

3.3.5 Balancing Experimental Groups

The design of the replication called for the formation of two groups of experimental
subjects called Group 1 and Group 2. These two groups were formed from 23 experi-
mental subjects. Because the subjects of the ESPEL replication have a different level
of professional experience than the subjects of the original experiment, we decided
to stratify the groups depending on this characteristic to assure a more reliable
balancing of groups. To do this, we conducted a survey of 21 subjects (two did not
attend on the day that the survey was administered) to get a better picture of their
professional experience, assuming that professional programmers or testers would
apply the techniques more effectively than subjects with less experience.

In the survey, the experimental subjects were asked about their general pro-
gramming experience, C programming experience and software testing technique
experience. The results are illustrated in Figs. 1, 2 and 3, and tabulated in Table 21 of
Appendix B.



392 Empir Software Eng (2014) 19:378–417

Fig. 1 Survey results—programming

We found that almost half of the experimental subjects are professional program-
mers, whereas the other half have only programmed as part of practical assignments.
C is not the most popular programming language used by subjects for formal
development, but they are all acquainted with the language, at least in theory.
A considerable percentage (20 %) of experimental subjects are not familiar with
software testing techniques. None are professional testers, and generally they have
only used testing techniques as part of practical assignments.

Experience in both C and the testing will definitely have an effect. However,
81 % of subjects have no professional experience in C, whereas none of the subjects
have professional testing experience. The difference in the effectiveness between
inexperienced and experienced subjects will be very small for both variables, as the
value range is from No experience to I have done practical assignments. Therefore,
we can assume that experience in C and testing will have a rather small effect or, at
least, less than professional experience in programming is likely have.

Fig. 2 Survey results—C programming



Empir Software Eng (2014) 19:378–417 393

Fig. 3 Survey results—software testing

On the other hand, programming experience did vary considerably (roughly 40%
of subjects have professional programming experience, compared with 60 % who do
not), and it is reasonable to assume that this experience may well have a bearing.
On this ground, we conducted a stratified randomization (Kernan et al. 1999) based
on programming experience. The two subjects that were not surveyed were each
allocated to one group (G1 (EP-BT) or G2 (BT-EP)) at random.

In this way, we produced two groups of experimental subjects that were bal-
anced with respect to programming knowledge. With respect to C programming
experience, both groups were balanced regarding the number of subjects that used
C in industry or academia (around 20 and 80 %, respectively), as shown in Fig. 4.
G1 subjects had a slight advantage in terms of the type of experience that they
had acquired in academia. Of G1 group subjects, 54 % have used C in practical
assignments, whereas the remaining 27.3% know the theory or have completed short
exercises. The respective percentages for the G2 group are 30 and 50 %.

The G1 group also appears to have slightly more software testing technique
experience, as shown in Fig. 5. Of these subjects, 45.5 % have experience in practical
assignments, whereas the remaining 54.6% know the theory or have completed short
exercises. The respective percentages in the G2 group are 20 % and 80 %.

This imbalance between groups could result in subjects from the EP-BT group
being generally more effective than subjects from the BT-EP group. Although we
think this is a remote possibility, it should be taken into account during the discussion
of the results of the replication. The between-group differences are confined to
some subjects in the G1 group having completed more practical assignments than
G2 group members. We have the feeling that any difference there is will be small.
Additionally, all subjects have received special-purpose training in software testing
before the experiment, which includes practical exercises. This training should have
further reduced the differences between the groups.

3.3.6 Training Adaptation

The teaching method applied in the original experiment was divided into three
four-hour sessions plus homework, each of which was held one week apart. The



394 Empir Software Eng (2014) 19:378–417

Fig. 4 Results of the stratified randomization for C programming

replication training, on the other hand, had to be adapted to the semi-distance teach-
ing method at ESPEL, with five consecutive 10-h sessions, during which students
completed all the practical exercises. In view of this training method, the fatigue
factor is a validity threat, which may have influenced subject performance.

3.3.7 Localization

Although similar syntactically, the Spanish spoken in Spain (Castilian) and the
Spanish spoken in Latin America, particularly Ecuador, are slightly different with
respect to the words and idioms used locally. On this ground, we modified details,
such as terms and phrases, that are not common in the dialect spoken in the area
where the replication was conducted to ease understanding. We also corrected some
minor ambiguities found in the original material. The material used for replication
purposes is available at: http://www.grise.upm.es/sites/extras/12/.

http://www.grise.upm.es/sites/extras/12/


Empir Software Eng (2014) 19:378–417 395

Fig. 5 Results stratified randomization for testing experience

3.4 Replication Execution

The replication was executed according to a similar procedure to the original
experiment. The subjects were given the same experimental materials (experimental
objects, program specifications, source code listing with seeded faults, forms, guides
and executable code with seeded faults), and generated and proceeded to execute
test cases in order to check that the identified faults caused failures. There were no
major events (e.g. drop-outs, errors in materials delivery, etc.) during the replication
execution. The data were analyzed according to the same procedure as in the original
experiment.

Table 6 Test of within-subjects effects

Source Type III sum of squares df Mean square F Sig.

Technique 1999.054 1 1999.054 4.517 0.046
Session/program 4655.948 1 4655.948 10.520 0.004
Error (technique) 9294.241 21 442.583



396 Empir Software Eng (2014) 19:378–417

Table 7 Test of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Intercept 68201.322 1 68201.322 100.846 0.000
Group 6028.757 1 6028.757 8.914 0.007
Error 14202.195 21 676.295

3.5 Replication Results

This section describes the results of the replication. Specifically, we report the
hypothesis tests and multiple comparisons for each response variable (InScope or
OutScope). The raw data and descriptive statistics are reported in Appendix C.

Like the original experiment, the experimental design used in the replication lends
itself to a repeated-measures analysis of variance (rANOVA) and the same additive
model. SPSS V.20 was used for all calculations.

3.5.1 Response Variable: Ef fectiveness for Faults Within Technique Scope

There are two requirements for applying a rANOVA: homogeneity of the covariance
matrices and sphericity.

Box’s M test is used to check the condition of homogeneity of covariancematrices.
Box’s M tests the null hypothesis that the observed covariance matrices of the
dependent variables are equal across groups (Meyers et al. 2006). For our sample,
M = 3.755, F = 1.122, df1 = 3, df2 = 111064.484, sig. = 0.338, that is, the results
verify the null hypothesis and the data are, therefore, homogeneous.

Mauchly’s test is used to check the sphericity condition. In our case, how-
ever, there are only two levels of repeated measures (for both technique and
session/program), which precludes a sphericity violation (Meyers et al. 2006), and,
therefore, the test is unnecessary.

As the analysis contains within- and between- subjects factors, we obtain two
different tables, one for each factor type, instead of the standard ANOVA table
(Tables 6 and 7). The results suggest that the technique, session/program and
group factors all influence the effectiveness with respect to the detection of faults
within technique scope. Therefore, the null hypothesis (there is no difference in
the effectiveness of equivalence partitioning and branch testing with respect to the
detection of faults within their scope) for this response variable is rejected.

The results of the pairwise comparison for the Technique factor, which are shown
in Table 8, suggest that branch testing is less effective than equivalence partitioning
(with an effectiveness of 31.943 and 45.140% respectively).

The pairwise comparisons for the session/program factor suggest that S1/nametbl
is more effective than S2/ntree (with an effectiveness of 48.612 and 28.471 %,
respectively), as shown in Table 9. As only one program is used in a session, it
is not possible at this point to distinguish whether the effect is produced by the

Table 8 Pairwise comparisons test for technique

Tech1 Tech2 Mean dif. Std. dev. Sig.

BT EP −13.197 6.210 0.046



Empir Software Eng (2014) 19:378–417 397

Table 9 Pairwise comparisons test for program

Prog1 Prog2 Mean dif. Std. dev. Sig.

S1/nametbl S2/ntree 20.140 6.210 0.004

Table 10 Pairwise comparisons test for group

Group1 Group2 Mean dif. Std. dev. Sig.

BT-EP EP-BT −22.918 7.676 0.007

Table 11 Test of within-subjects effects

Source Type III sum of squares df Mean square F Sig.

Technique 2905.36 1 2905.36 5.567 0.028
Session/program 6.577 1 6.577 0.013 0.912
Error (technique) 10959.95 21 521.902

Table 12 Test of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Intercept 17357.588 1 17357.588 20.086 0.000
Group 354.129 1 354.129 0.41 0.529
Error 18147.296 21 864.157

Table 13 Pairwise comparisons test for technique

Tech1 Tech2 Mean dif. Std. dev. Sig.

BT EP 15.910 6.743 0.028

Table 14 Pairwise comparisons test for program

Prog1 Prog2 Mean dif. Std. dev. Sig.

S1/nametbl S2/ntree 0.757 6.743 0.912

Table 15 Pairwise comparisons test for group

Group1 Group2 Mean dif. Std. dev. Sig.

BT-EP EP-BT 5.554 8.677 0.529



398 Empir Software Eng (2014) 19:378–417

session, by the program or by both. We will try to clarify whether the session or
the program caused the observed effect when we examine the OutScope faults and,
especially, when we compare the replication results with the original experiment.

The results of the pairwise comparison for the Group factor suggest that the
BT-EP group (which applies branch testing in session 1 followed by equivalence
partitioning in session 2) is less effective than the EP-BT group (with an effectiveness
of 27.082 and 50.00 %, respectively), as shown in Table 10.

There are two possible explanations for this result:

– A carryover effect could be influencing the effectiveness of techniques depend-
ing on whether they are applied in first or second place. Carryover signifies an
increase (or decrease) in the effectiveness of the technique that a subject applies
in second place.

– As mentioned earlier in Section 3.3.5, the EP-BT group is slightly more experi-
enced than the BT-EP group in C and software testing. This superior experience
could explain why the EP-BT group is more effective.

We will try to determine whether the observed effect is to due to between-group
differences or carryover when we study the OutScope faults and, later, when we
compare the results of the replication with the original experiment.

3.5.2 Response Variable: Ef fectiveness for Faults Outside Technique Scope

We check whether the sample has the sphericity and homoscedasticity properties
before conducting the statistical analysis. Mauchly’s W and Box’s M statistics again
confirmed those properties (W = 1.000, Approx. Chi-Square = 0.000, df = 0, Sig. =
0.000; M = 11.947, F = 0.429, df1 = 3, df2 = 111064.484, Sig. = 0.732).

The analysis results, which are shown in Tables 11 and 12, suggest that there are
significant differences for the technique factor, but not so for the session/program
and group factors. Therefore, as in the case of the InScope response variable, the
null hypothesis is rejected.

Regarding the Technique factor, Table 13 shows that branch testing is more
effective than equivalence partitioning for faults outside technique scope (with an
effectiveness of 31.943 and 11.489%, respectively). These results reveal the opposite
pattern to the analysis of the InScope faults reported in Section 3.5.1 (that is,
branch testing is less effective than equivalence partitioning for faults within technique
scope). This suggests that equivalence partitioning is more sensitive to faults within
its scope, but branch testing is better at detecting faults outside its scope.

The multiple comparisons for the session/program factor, shown in Table 14,
suggest that there are no significant differences between the levels of this factor.
However, the results of the InScope response variable, which were reported in
Section 3.5.1, did suggest that there were significant differences. There is no apparent
reason why the session/program factor should behave differently depending on fault
types. Therefore, we are unable to venture any hypothesis to explain this discrepancy
considering just the replication results.

The multiple comparisons for the Group factor, shown in Table 15, suggest
that, unlike our findings for the InScope response variable, there are no significant
differences between BT-EP and EP-BT.

In Section 3.5.1, we ventured two hypotheses to explain the results for InScope
faults: the existence of a carryover effect or, alternatively, the EP-BT group’s supe-



Empir Software Eng (2014) 19:378–417 399

rior C and testing technique experience. In either case, we would expect this effect
to be the same irrespective of the fault type. Again considering only the replication
results, we are unable to venture any reason why effects should be significant for the
InScope response variable.

4 Comparison of Replication Results to Original Results

Because our replication uses a subset of factor levels of the original experiment,
we will not be able to contrast all the results of the original experiment with
the replication, and some will be only partially comparable. The branch testing
and equivalence partitioning levels of the technique factor are comparable in both
experiments, but we left out the stepwise abstraction technique, which is used only in
the original experiment.

The session/program factor is partially comparable, as the programs used in
the two experiments (nametbl and ntree) correspond to different sessions in each
experiment (sessions 1 and 2 in ESPEL and sessions 3 and 2 in UPM, respectively).
We clearly define whether we are referring to the program or session in each case.

In the case of the group factor, it is the technique factor levels and experiment
sessions that define the levels of each group. Six different groups were formed in the
original experiment and only two in the replication. The two groups formed in the
replication are subsets of two of the six groups of the original experiment. Therefore,
they are only comparable at a very high level.

Sections 4.1 and 4.2 contain the similarities and differences, respectively, between
the original experiment and the replication.

4.1 Consistent Results

The consistent results between the original experiment and the replication refer to
the technique factor for both the InScope andOutScope response variables, as shown
in Table 16. This table summarizes the results obtained in the multiple compar-
isons for the original experiment (UPM) and the replication (ESPEL), specifying
whether the null hypothesis (there is no difference in the effectiveness of equivalence
partitioning and branch testing with respect to the detection of faults) is rejected
or accepted and showing the observed pattern (order relationship) between the
factor levels.

4.1.1 InScope Response Variable

Branch testing is less effective than equivalence partitioning in both experiments,
albeit with some fine distinctions. Firstly, as shown in Table 16, at ESPEL we have
obtained significant differences between the technique levels, whereas the difference
was not so grand at UPM. However, the patterns are the same (BT < EP) in
both cases.

Table 16 UPM-ESPEL
comparison—technique factor

Response H0 Tendency

Variable Upm Espel Upm Espel

InScope Accept Reject BT < EP BT < EP
OutScope Reject Reject BT > EP BT > EP



400 Empir Software Eng (2014) 19:378–417

Secondly, the marginal means for the technique factor at ESPEL are lower than
at UPM (branch testing with 31.943 vs. 67.670 % and equivalence partitioning with
45.140 and 78.704 %, respectively). Finally, branch testing technique dispersion is
lower at ESPEL than at UPM, as shown in Fig. 6.

Branch testing’s lower dispersion at ESPEL may explain why the difference be-
tween branch testing and equivalence partitioning is significant at ESPEL. BT’s wider
dispersion at UPM may be due to the fact that UPM subjects are undergraduate
students, in general without professional experience, and therefore their testing
abilities may vary considerably. This would generate wide interquartile ranges. As
a consequence, the null hypothesis could not be rejected at UPM, causing the

Fig. 6 Boxplot for technique at UPM and ESPEL—InScope



Empir Software Eng (2014) 19:378–417 401

impression that the results at UPM and ESPEL are slightly different, when they
really are consistent.

Why the subjects are less effective at ESPEL than at UPM is another question.
Themost likely reason is that the course on which the experimentwas run is intensive
(long lecture hours concentrated over just a few days). This may have influenced
technique effectiveness, as subjects may not have had enough time to practice and
consolidate the usage of the techniques. Branch testing would be more adversely
affected, since subjects told us at post-experimental meetings that BT is harder
to understand and apply than EP. Another potential factor, besides the teaching
method, is trainer inexperience in teaching the software verification and validation
course, especially under such circumstances.

4.1.2 OutScope Response Variable

The results obtained at UPM for this response variable were confirmed at ESPEL,
as the null hypothesis is rejected in both cases, and, besides, the trend is the same
as shown in Table 16, where branch testing is more effective than equivalence
partitioning for faults that are outside their scope. The values of the marginal
means are slightly lower at ESPEL (27.398 % for branch testing and 11.489 % for
equivalence partitioning) than at UPM (29.089 % for branch testing and 14.119 %
for equivalence partitioning). The dispersions are generally quite similar, albeit,
predictably for undergraduate students, slightly wider at UPM, as shown in Fig. 7.
It is interesting to note that the low technique effectiveness at ESPEL is much more
marked for the InScope than for the OutScope faults, considering that the differences
in the training (both course intensiveness and possibly trainer inexperience) should
(in principle) affect both response variables more or less equally.

A possible explanation for better branch testing performance with OutScope
faults is that the test case generation strategy requires an analysis of source code,
at which point subjects could informally apply code inspection and thus round out
the technique. This is a convincing explanation for two reasons:

– Subjects applying the equivalence partitioning technique do not have the source
code of the program that they are testing (only the executable), as mentioned
in Section 2.6.2. Consequently, their fault detection proficiency should be very
low. This is precisely what we found, as the mean effectiveness of experimental
subjects is 11.5 %, that is, each subject identifies on average 0.3 faults.

– Without the help of testing techniques, subjects with comparable characteristics
(programming experience, years of experience industry, etc.) should locate more
or less the same faults. We expect to observe that ESPEL subjects are more
effective than UPM subjects because they have some professional experience.
We found that the effectiveness of both subject groups (ESPEL and UPM) is
more or less equal. Now, this is precisely what we would expect to find if the
ESPEL subjects were to be suffering from fatigue as a result of experiment
planning, as discussed in Section 4.1.1. Another reasonable hypothesis in the light
of the results is that subjects apply informal code reading during the application
of the branch testing technique.

Even though this is a reasonable hypothesis, it needs to be corroborated in
future replications.



402 Empir Software Eng (2014) 19:378–417

Fig. 7 Boxplot for technique at UPM and ESPEL—OutScope

4.2 Differences in Results

The differences between the results of the original experiment and the replication
refer to the session/program and group factors. Both are dealt with separately in the
following.

4.2.1 Dif ferences with Respect to the Session/Program Factor

Table 17 summarizes the comparison for the session/program factor.

(A) InScope Response Variable With respect to session/program factor, testing
was more effective at UPM when the ntree program was applied, whereas just



Empir Software Eng (2014) 19:378–417 403

Table 17 UPM-ESPEL comparison—session/program factor

Response H0 Tendency

Variable Upm Espel Upm Espel

InScope Accept Reject S3 < S2 S1 > S2
ntbl < ntree ntbl > ntree

OutScope Accept Accept S3 > S2 S1 < S2
ntbl > ntree ntbl < ntree

the opposite was the case at ESPEL, where nametbl was more effective as
shown in Fig. 8. Additionally, the differences are significant at ESPEL, whereas
at UPM they are not.
We changed the order in which the ntree and nametbl programs were applied
in the replication. This change is designed to clarify whether it is the session
or program (as the original experimenters claim) that is causing the observed
effect.
ESPEL results contradict UPM results, suggesting that causal factor is proba-
bly the session and not the program.
Fatigue could be the mechanism through which the session influences
effectiveness. Note that the experiment was run on an intensive academic pro-
gramme and experimental sessions were held only one day apart. Therefore,
subjects might well have been fatigued when they arrived at the experimental
sessions (notice, in this respect, that the marginal means of effectiveness are
always lower at ESPEL than at UPM and that, in particular, S2 was less
effective than S1 (as Fig. 8 clearly shows).
The possibility of a fatigue effect is a convincing hypothesis on two grounds.
Firstly, the sharp drop in effectiveness from S1 to S2 would explain why the
S1/nametbl and S2/ntree differences turned out to be significant. If fatigue
had had no effect, the differences would have been smaller and possibly not
significant, which is what was found at UPM (where the sessions were held one
week apart). Secondly, the effect size for the session/program factor (shown
in Table 9) is abnormally high compared with the technique factor (shown in
Table 8). The fatigue effect is also compatible with this finding.
In any case, the data gathered in the two experiments are still not enough to
determine which factor (session or program) is really having a bearing, so yet
more replications will be necessary to clarify this point.

(B) OutScope Response Variable Neither experiment observed significant
differences with respect to the OutScope variable. The above-mentioned
possibility of a fatigue effect is entirely consistent with the fact that S2/ntree
is less effective than S1/nametbl, as shown in Fig. 9.

The ESPEL andUPM results have a completely different pattern, giving the visual
impression that the two experiments are inconsistent. Note, however, that the S1–S2
and ntree-nametbl differences are not significant in either experiment. The fact that
the results are not significant shows that neither the program nor the session (with
the possible exception of a fatigue effect) has any effect on OutScope fault detection
effectiveness, which makes sense. This strengthens the plausibility of OutScope fault
detection depending exclusively on the expertise of the experimental subjects, as
specified in Section 4.1.2.



404 Empir Software Eng (2014) 19:378–417

Fig. 8 Estimated marginals means for Session/Program at UPM and ESPEL—InScope

4.2.2 Dif ferences Regarding the Group Factor

The between-group differences at ESPEL and UPM cannot be tabulated and
plotted as above, because they are too profound. Taking into account the statistical
significance of the results, however, we can compare the two experiments as shown
in Table 18.

(A) InScope Response Variable The results of the experiments at both UPM and
ESPEL are statistically significant for the group factor. The analysis suggests
that ESPEL results may be due to either a carryover effect or an imbalance in
experience in C programming and testing technique use across experimental



Empir Software Eng (2014) 19:378–417 405

Fig. 9 Estimated marginals means for session/program at UPM and ESPEL—OutScope

groups. At UPM, we do not know whether or not the experimental groups
are balanced (the original experimenters do not provide this information).
Additionally, the original report (Juristo et al. 2013) indicates that there was
no carryover.

Table 18 UPM-ESPEL
comparison—group factor

Response H0

Variable Upm Espel

InScope Reject Reject
OutScope Reject Accept



406 Empir Software Eng (2014) 19:378–417

We take the view that the between-group imbalance has not had a decisive
impact. The imbalance between experimental groups at ESPEL should show
up consistently across the InScope and OutScope faults. However, this is not
the result that we observed, as the between-group difference for OutScope
faults is not significant (and, besides, is different to the pattern for InScope
faults).
In our view, the carryover effect cannot be ruled out. This opinion is based on
two observations:

– The analysis of the technique and session/program factors at both ESPEL
and UPM appears to suggest that OutScope fault detection depends exclu-
sively on the experimental subjects, that is, on their knowledge, experience,
etc. If this were the case, we should not observe any carryover effect for
OutScope faults in the replication, as equivalence partitioning and branch
testing have no influence on OutScope fault detection. This would not
apply to InScope faults, and it would make sense if we were to observe
a carryover effect.

– Nonstatistically, using EP first appears to improve the effectiveness of
the techniques applied subsequently in both experiments (groups EP-CR-
BT and EP-BT-CR in the original experiment and group EP-BT in the
replication appear to be more effective).

Small sample effects offer a possible explanation, which does not support the
carryover effect, for the significant differences that show up with respect to
the group factor. The original experiment had 46 experimental subjects, so the
number of subjects per group is 46/6 � 8. At ESPEL, the number of subjects
per group is 23/2 � 12. With so few subjects per group, the significant effects
may be a product of chance.
We take the view that the small sample effects can add noise to the data analy-
sis (that is, cause some groups to exhibit significant differences from others
purely by chance), but this does not fully explain the results. Note that the
small sample effect should act consistently across InScope andOutScope faults,
which is not the case. At UPM, three groups exhibit significant differences
with respect to InScope faults, whereas only one of the groups has significant
differences with respect to OutScope faults (which could quite possibly be a
small sample effect). At ESPEL, the differences are significant for InScope but
not for OutScope faults. Consequently, there may well be a carryover effect
with respect to InScope faults.
Unfortunately, the carryover hypothesis is rather speculative. The groups at
ESPEL and UPM are not directly compatible; hence all inferences are based
on indirect evidence. Consequently, more replications need to be conducted to
confirm or reject the existence of a carryover effect.

(B) OutScope Response VariableWe have been obliged to explain all our findings
with respect to the OutScope variable in the analysis of the InScope response
variable. On this ground, we will merely state our conclusions at this point:

– We ascribe the existence of significant differences with respect to the group
factor for OutScope faults to a small sample effect.

– It appears from the analysis of the technique and session/program factors
that subjects draw on their own expertise to detect OutScope faults. On



Empir Software Eng (2014) 19:378–417 407

this ground, there should be no carryover effect (which, basically, is the end
result of a relationship between testing techniques and cannot, therefore,
exist unless they have a bearing on the OutScope response variable).

5 Conclusions and Lessons Learned Across Studies

5.1 Conclusions

Comparing non-identical replications is a complex issue. The changes caused by
eliminating one of the technique factor levels on logistic grounds (insufficient time
to run all the experimental sessions) have had a waterfall effect on the program and
session factors. Consequently, neither the sessions nor the groups are comparable in
every respect. Even so, the replication has helped to get a better understanding of
the influence of the factors under study:

– Firstly, we have confirmed that the equivalence partitioning technique is more
effective at detecting faults that are within its scope and branch testing is
more effective for faults outside its scope. A possible reason for this difference
of effectiveness in the case of the InScope variable is that subjects find the
branch testing technique harder to use or, at least, are better at applying the
equivalence partitioning technique. Regarding the difference in effectiveness for
the OutScope response variable, we hypothesize that the structural technique
is more effective because students use code review to round out the technique.
As they have access to the source code (not so for the functional technique),
they can inspect the code to gain a better understanding of the program. The
statistical results show that the measures of effectiveness were generally lower at
ESPEL than at UPM. This could be attributed to the influence of the setting. To
be precise, we believe that the extremely intensive teaching method applied in
training could have had an influence. Apart from the teaching method, another
consideration is trainer inexperience in teaching the software verification and
validation course, especially under the circumstances.

– Secondly, the results for the session/program and group factors with respect
to the OutScope response variable support the hypothesis that neither the
EP nor the BT technique really influence OutScope fault detection. In both
cases (session/program and group), the results were not significant in either the
original experiment or the replication.

– Thirdly, the existence of some sort of carryover effect for the InScope variable
appears to be confirmed. In this case, the problem is that the groups are formed
differently in the two experiments and are hence not comparable. Consequently,
further replications need to be conducted before we can state that this effect
really does exist.

The hardest thing to figure out was the influence of the session/program factor
with respect to the InScope variable. The original experimenters had concluded
that the program was responsible for the session/program effect on effectiveness at
UPM (remember that the two factors are confounded). The original experimenters
arrived at this conclusion after comparing the InScope and OutScope fault detection
effectiveness for session/program. This comparison suggested that the differences



408 Empir Software Eng (2014) 19:378–417

between cmdline, nametbl and ntree together offered a better explanation than the
differences across sessions S1, S2 and S3 for the resulting data.

However, the results at ESPEL for InScope have a completely opposite pattern
to UPM findings. Not only do the ESPEL and UPM patterns differ with respect to
the programs (ntree>nametbl at UPM, whereas nametbl>ntree at ESPEL), but the
differences at ESPEL are also statistically significant.

One of the changesmade to the replication with respect to the original experiment
was to reduce the number of sessions from three to two. This led to one of the
programs used in the original experiment (cmdline) being omitted. Under these
circumstances, it is hard to reach any sort of reliable conclusion. Our analysis
tends to ascribe the observed effects to the session rather than to the program.
However, there are other alternative explanations. The existence of some sort
technique/program interaction is a particularly convincing cause.

Figure 10 shows boxplots for the technique factor. In contrast to Fig. 6, they
have been further decomposed by session/program. Figure 10 is not easy to interpret
because there are several outliers, but the median for EP x nametbl is clearly much
greater than for the other combinations (BT x nametbl, etc.). The profile diagram
shown in Fig. 11 illustrates these values more clearly (Note that this diagram plots
means not medians). Neither the original experiment nor the replication (which
reuses the original analytical model for the sake of comparability) account for this
interaction, as a repeated-measures ANOVA cannot calculate this effect.

Irrespective of the analytical model used, the existence of such an interac-
tion would be compatible with the results for technique and program at ESPEL
and would explain why a carryover effect was observed. (Note that the tech-
nique/program interaction, that is, where a techniquemay bemore effective when ap-
plied to certain programs, is confounded with the group factor, and thus the statistical
analysis is unable to distinguish the two effect types.) A possible technique/program
effect does not explain all the findings, however. In particular, there is the question of

Fig. 10 Boxplot for the
interaction technique ×
session/program at
ESPEL—InScope



Empir Software Eng (2014) 19:378–417 409

Fig. 11 Profile diagram for the
technique × session/program
interaction at
ESPEL—InScope

why the EP-BT-CR andEP-CR-BT groups are so effective in the original experiment
when the program tested in the first session was cmdline and not nametbl, and all
the subjects participating in the experiments regarded cmdline as a program that is
hard to understand and test. In actual fact, all the above explanations are tentative.
As already mentioned, we will not be able to clearly understand the effects of the
technique and session/program factors unless further replications are conducted.

5.2 Lessons Learned

The replication that we have conducted is one of a long line of experiments. This
means that information and the experience gathered from multiple replications
conducted as part of this family is reasonably thorough, and, as we also had access to
the original experiment report, the replication could have been carried out without
any additional information.

With hindsight, however, we believe that we would have had very little prospect of
success if we had proceeded in this manner (as already mentioned, we had intensive
communication with the original experimenters). The likenesses between the two
experiments are noteworthy, but the differences are no less marked. We have been
able to trace these differences back to characteristics of the experimental setting (e.g.,
software verification and validation course intensiveness), but this was possible only
because relatively few changes were made to the replication. For example, we might
have ascribed the low effectiveness of the ESPEL subjects using the branch testing
technique to the fact that they were inexperienced at programming in C. But, UPM
subjects are generally not very experienced C programmers either and they are more
effective. Therefore, the low effectiveness is more likely to be due to the training
received, which does vary, and very much so, from ESPEL to UPM.



410 Empir Software Eng (2014) 19:378–417

With no more than the original experiment report and the experimental materials,
such a close coincidence appears to be very hard to achieve. The experimental
material did not describe training issues, such as mentioned above; nor did it detail
experiment execution or results measurement, for example. Had we not cooperated
with the original experimenters, especially during the early stages, the differences
between the original experiment and the replication would probably have beenmuch
larger. These differences (such as, for example, the above changes regarding training)
are also likely to have caused discrepancies in the results. A post-experimental
discussion with the original experimenters could show up design differences, but
would not be able to prevent any discrepancies caused by such changes. However,
these points were discussed at the pre-experimental meetings that we had with the
original experimenters.

As a corollary to the above, the experience of having replicated an experiment
previously conducted by other experimenters and, especially, the attempt at com-
paring the results of the two experiments, has shown that unless replications closely
resemble the original experiment it is impossible to ascribe (at least hypothetically)
consistent and inconsistent results to particular factors and parameters. For the
reasons discussed above, if the experimental settings are not alike, the differences
between the results can be attributed to virtually any aspect, making the replication
much less enlightening than it would otherwise be.

Obviously, merely replicating an experiment with a similar design does not
guarantee that the results can be definitely ascribed to a factor. On the one hand,
any experiment is subject to some error probability (α and β). On the other hand,
we do not know which aspects of a setting (that is, uncontrolled variables) are likely
to alter the effects of the factors. Consequently, even very similar replications can
return contradictory results.

We can reduce α and β error fairly simply by increasing the number of experi-
mental subjects. As the number of subjects increases, experimenters can gradually
lower the α and β values. In practice, however, the availability of experimental
subject is limited (for example, Sjøberg et al. 2005, report that the mean number
of experimental subjects per SE experiment is 48.6). In other words, we can at best
reckonwith enough subjects to assure normality and elude small sample effects (from
30 to 50 subjects) (Richy et al. 2004; Graham and Schafer 1999).

The second problem cannot be solved by running a single replication. The
unknown variables are, as their name indicates, inscrutable, and therefore their effect
cannot be estimated. Nevertheless, randomization is usually considered effective
(that is, cancels out the effects of uncontrolled variables) as of 30 subjects, which
is when a sample of a standard population is assumed to meet the normality
assumption.

The replication that we have conducted has both of the above characteristics. It
has 23 experimental subjects, which is lower than the average 48.6 subjects per SE
experiment reported by Sjøberg et al. (2005). However, as a result of the cross-
over design, those 23 subjects are equivalent to 23 × 2 = 46 experimental units. In
the case of repeated-measures designs, it is the number of experimental units, not
subjects, that influences the α and β values. Sjøberg et al. (2005) do not report
the number of experimental units per SE experiment. However, the number is
unlikely to be much greater than 48.6, because within-subjects is not the most



Empir Software Eng (2014) 19:378–417 411

common experimental design in SE. Therefore, this replication can be considered
an “average” SE experiment.

Even so, we have observed inconsistencies with the original experiment despite
having kept all parameters and factors reasonably well under control. We have
hypothesized that such inconsistencies can be put down to certain causes (as in
the case of the differences in the results with respect to session/program), but this
has only been possible because the experiments are quite alike. If there were more
differences between the experiments, any such, even hypothetical, attribution would
be out of the question.

These may not, of course, be the real causes of the inconsistencies. Literal
replications (that is, replications that closely resemble the original experiment) are
just a starting point. We will in any case have to run differentiated replications in
order to more generally explore all the factors that potentially have an effect.

Finally, we have found that the preparation of the replication accounts for a much
larger workload than the experimental sessions. Gaining a detailed understanding
of the original experiment, plus the initial training and processing of the forms sub-
mitted by subjects, proved to be much more time-consuming than the experimental
sessions. In fact, the session workload was comparatively insignificant.

Briefly the lessons learned were:

– Support from the original experimenters is important, during the early replica-
tion preparation phases at least, in order to supplement the information available
in reports and materials. It is vital to have as much information as possible to
ensure that the original experiment and replication are comparable.

– The replication must be as like the original experiment as possible in order to be
able to ascribe the detected differences (or similarities) to specific variables.

– The highest experiment workload is spent not on the experimental sessions per
se but on the preparation of the experiment and analysis of the information
gathered from subjects.

5.3 Experiences with Reporting Guidelines

Apart from reporting the replication, we have, as part of this research, tested the
guidelines for reporting replications proposed by Carver (2010). Generally, the
guidelines have proved to be really useful, especially as regards the description of the
replication in terms of its differences to the original experiment. However, there are
some points that we found not to be fully satisfactory and think should be improved:

– The granularity with which the original experiment should be described is
unclear. On the one hand, the original experiment can be assumed to have
been published, meaning that a brief description would do the job (interested
readers could always refer to the original publication). But, on the other hand,
the description should be detailed enough for readers to be able to understand
the impact of the changes made to the replication. The guidelines should be
clearer in this respect.

– Again regarding the reporting of the original experiment, our impression is that
the section contents are very unbalanced. The research questions section has very
little content, whereas the experimental design section is packed out. Addition-
ally, it is unclear where the hypotheses should be defined. We have moved some



412 Empir Software Eng (2014) 19:378–417

elements (hypotheses, factors and response variables) to the research questions
section, but we consider this procedure to be unsatisfactory.

– In the case of literal replications, it is unclear which parts of the experiment or
replication to report. In the replication that we have run, for example, we use
only two of the three main factor levels of the original experiment. Should we
report the results concerning the third level of the original experiment? On the
one hand, it appears that we should, otherwise the report would be incomplete.
But, on the other hand, the third level is of no use for comparing the original
experiment and the replication. Also, readers could always refer to the original
experiment report to look up any information about this third factor.

– There is no separate section for discussing the results of the replication. The
replication results should be discussed separately before identifying the similari-
ties and differences between experiments.We have added a separate section, but
we think that the guidelines should take this point into account.

5.4 Future Work

The replication that we have run has essentially confirmed the effects observed in
the original experiment. However, there are some effects, such as differences of
effectiveness associated with sessions/programs or carryover effects, which we have
still not been able to positively ascribe to specific variables. Our short-term goal is to
continue replicating the UPM experiment, altering the setting as little as possible in
order to determine beyond all doubt which variables produce which effects. Once we
have a good understanding of how the (equivalence partitioning and branch testing)
testing techniques behave, we will be able to run differentiated replications that
explore different settings or populations (e.g., experienced professionals or industrial
settings).

Acknowledgements This research has been funded by a grant from the Armed Forces Technical
School (ESPE), Republic of Ecuador National Higher Education, Science, Technology and Inno-
vation Secretary’s Office (SENESCYT) and partially funded by the Spanish Ministry of Economics
and Competitiveness project TIN2011-23216.

We also thank the reviewers for their thoughtful review, which greatly improved the quality of
the manuscript.

Appendix

Appendix A: Descriptive Statistics

Table 19 Descriptive statistics
InScope variable

Technique N Mean Std. dev.

Branch testing 23 31.883 25.581
Equivalence partitioning 23 44.204 29.988

Table 20 Descriptive statistics
OutScope variable

Technique N Mean Std. dev.

Branch testing 23 27.536 32.803
Equivalence partitioning 23 11.593 16.231



Empir Software Eng (2014) 19:378–417 413

Appendix B: Survey’s Data

Table 21 Survey’s data

Q1: Question 1
Q2: Question 2
Q3: Question 3
Value 1: None
Value 2: I know the theory
Value 3: I have done short
exercises
Value 4: Practical assignments
Value 5: Development projects

Subject Group Q1 Q2 Q3

S1 G2 3 3 2
S2 G1 NA NA NA
S3 G1 5 4 4
S4 G2 5 3 4
S5 G2 4 2 2
S6 G2 5 2 2
S7 G1 4 2 2
S8 G1 5 4 3
S9 G1 5 5 4
S10 G2 5 4 2
S11 G2 4 4 1
S12 G1 4 4 4
S13 G2 NA NA NA
S14 G1 4 5 4
S15 G1 3 4 1
S16 G1 4 3 3
S17 G1 4 4 1
S18 G2 4 3 3
S19 G2 5 5 4
S20 G2 4 5 2
S21 G1 5 3 2
S22 G1 5 4 4
S23 G2 4 4 2

Appendix C: Replication’s Raw Data

Table 22 Replication’s raw data

S G T P Se Vis. for EP Vis. for BT In Out

F1 F2 F3 F4 F5 F6 (%) (%)

1 2 EP Na 1 1 1 66.7 0.0
1 2 BT Nt 2 1 33.3 0.0
2 1 BT Na 1 1 0.0 33.3
2 1 EP Nt 2 1 33.3 0.0
3 1 BT Na 1 0.0 0.0
3 1 EP Nt 2 1 33.3 0.0
4 2 EP Na 1 1 33.3 0.0
4 2 BT Nt 2 0.0 0.0
5 2 EP Na 1 1 1 66.7 0.0
5 2 BT Nt 2 0.0 0.0
6 2 EP Na 1 1 1 33.3 33.3
6 2 BT Nt 2 0.0 0.0
7 1 BT Na 1 0.0 0.0
7 1 EP Nt 2 1 1 1 66.7 33.3
8 1 BT Na 1 0.0 0.0
8 1 EP Nt 2 0.0 0.0
9 2 EP Na 1 1 1 66.7 0.0



414 Empir Software Eng (2014) 19:378–417

Table 22 (continued)

S G T P Se Vis. for EP Vis. for BT In Out

F1 F2 F3 F4 F5 F6 (%) (%)

9 2 BT Nt 2 1 1 66.7 0.0
10 1 BT Na 1 0.0 0.0
10 1 EP Nt 2 0.0 0.0
11 2 EP Na 1 1 1 66.7 0.0
11 2 BT Nt 2 1 33.3 0.0
12 1 BT Na 1 1 1 1 0.0 100.0
12 1 EP Nt 2 1 1 33.3 33.3
13 2 EP Na 1 0.0 0.0
13 2 BT Nt 2 1 1 1 33.3 66.7
14 1 BT Na 1 0.0 0.0
14 1 EP Nt 2 0.0 0.0
15 1 BT Na 1 1 0.0 33.3
15 1 EP Nt 2 1 0.0 33.3
16 1 BT Na 1 1 1 33.3 33.3
16 1 EP Nt 2 1 1 33.3 33.3
17 1 BT Na 1 1 0.0 33.3
17 1 EP Nt 2 0.0 0.0
18 2 EP Na 1 0.0 0.0
18 2 BT Nt 2 1 1 66.7 0.0
19 2 EP Na 1 1 1 66.7 0.0
19 2 BT Nt 2 0.0 0.0
20 1 BT Na 1 0.0 0.0
20 1 EP Nt 2 1 0.0 33.3
21 2 EP Na 1 1 1 1 1 100.0 33.3
21 2 BT Nt 2 1 1 1 33.3 66.7
22 1 BT Na 1 0.0 0.0
22 1 EP Nt 2 0.0 0.0
23 2 EP Na 1 1 1 66.7 0.0
23 2 BT Nt 2 1 33.3 0.0

S: Subject,G: Group
T: Technique
(EP: Equivalence Partitioning, BT: Branch Testing)
P: Program (Na: Nametbl; Nt: Ntree)
Se: Session, F1–F6: Faults, Vis.: Visible
In: InScope, Out: OutScope (Response Variables)

References

Basili VR (1992) Software modeling and measurement: the goal/question/metric paradigm.
Tech. Rep. UMIACS TR-92-96, Departament of Computer Science, University of Maryland,
College Park

Basili VR, Selby RW (1985) Comparing the effectiveness of software testing strategies. Tech. Rep.
TR-1501, Departament of Computer Science, University of Maryland, College Park

Basili VR, Selby RW (1987) Comparing the effectiveness of software testing strategies. IEEE Trans
Softw Eng SE-13:78–96

Brown BW (1980) The crossover experiment for clinical trials. Biometrics 36:69–70
Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: Pro-

ceedings of the 1st international workshop on Replication in Empirical Software Engineering
Research (RESER). Cape Town, South Africa, 4 May 2010

Gómez O (2012) Tipología de Replicaciones para la Síntesis de Experimentos en Ingeniería del
Software. PhD thesis, Universidad Politécnica de Madrid



Empir Software Eng (2014) 19:378–417 415

Gómez O, Juristo N, Vegas S (2010) Replications types in experimental disciplines. In: Proceed-
ings of the 2010 ACM-IEEE international symposium on empirical software engineering and
measurement, no. 3. Bolzano-Bozen, Italy, pp 1–10

Graham JW, Schafer JL (1999) On the performance of multiple imputation for multivariate data
with small sample size. In: Hoyle RH (ed) Statistical strategies for small sample research. Sage
Publications, pp 1–29

Juristo N, Vegas S (2003) Functional testing, structural testing and code reading: what fault do
they each detect? In: Empirical Methods and Studies in Software Engineering Experiences from
ESERNET, vol 2785(12), pp 208–232

Juristo N, Vegas S, Apa C (2013) Effectiveness for detecting faults within and outside the scope of
testing techniques: a controlled experiment. Available at http://www.grise.upm.es/reports.php.
Accessed 15 May 2013

Kamsties E, Lott C (1995) An empirical evaluation of three defect-detection techniques. In: Fifth
European Software Engineering Conference (ESEC ’95). Lecture Notes in Computer Science,
vol 989, pp 362–383

Kernan WN, Viscoli CM, Makuch RW, Brass LM, Horwitz RI (1999) Stratified randomization for
clinical trials. J Clin Epidemiol 52(1):19–26

Kitchenham B, Fry J, Linkman S (2003) The case against cross-over designs in software engineering.
In: Eleventh annual international workshop on software technology and engineering practice,
pp 65–67

Meyers LS, Gamst G, Guarino AJ (2006) Applied multivariate reseach: design and interpretation.
Sage Publication

Myers GJ (1978) A controlled experiment in program testing and code walkthroughs/inspections.
In: Communications of the ACM, vol 21, pp 760–768

Richy F, Ethgen O, Bruyère O, Deceulaer F, Reginster J (2004) From sample size to effect-size:
Small study effect investigation (ssei). In: The Internet Journal of Epidemiology, vol 1

Roper M, Wood M, Miller J (1997) An empirical evaluation of defect detection techniques. Inform
Softw Technol 39(11):763–775

Senn S (2002) Cross-over trials in clinical research, 2nd edn. Wiley
Sjøberg DI, Han Hannay JE, Hansen O, Kampenes VB, Karahasanovic A, Liborg N-K, Rekdal

AC (2005) A survey of controlled experiments in software engineering. IEEE Trans Softw Eng
31:733–753

Wood M, Roper M, Brooks A, Miller J (1997) Comparing and combining software defect detection
techniques: a replicated empirical study. In: Proceedings of the 6th European software engineer-
ing conference held jointly with the 5thACMSIGSOFT international symposium on foundations
of software engineering. Zurich, Switzerland, pp 262–277

Cecilia Apa is an Assistant Professor at the Engineering School at the Universidad de la República
(UdelaR), coordinator of the Informatics Professional Postgraduate Center (UdelaR) and member
of the Organization Committee of the Software and Systems Process Improvement Network in
Uruguay (SPIN Uruguay). She received his B.Eng. in Computer Science from the UdelaR. She has
several articles published in regional and international conferences. Her main research topics are
empirical software engineering and software testing.

http://www.grise.upm.es/reports.php


416 Empir Software Eng (2014) 19:378–417

Oscar Dieste is research scientist with the Universidad Politécnica de Madrid. Previously, he has
been Fulbright Scholar with the University of Colorado at Colorado Springs and assistant professor
with the universities Complutense de Madrid and Alfonso X el Sabio. His research interests include
empirical software engineering, requirements engineering and their intersections. He received his
B.S. in Computing from the University of La Coruña and his Ph.D. from the University of Castilla-
La Mancha.

Edison G. Espinosa G. PhD student and Master of software engineering at Universidad Politécnica
de Madrid (UPM), Spain. He is full professor of software engineering in Escuela Politécnica del
Ejército Sede Latacunga, Ecuador.



Empir Software Eng (2014) 19:378–417 417

Efraín R. Fonseca C. received the MSc degree in 2010. He has ten years of IT industry experience as
consultant. He is full professor at Universidad Politécnica del Ejército of Ecuador and now is PhD
student at Universidad Politécnica de Madrid. Among his research interests are research process in
empirical software engineering, research methods in empirical software engineering, object-oriented
analysis and design and ontological representations in software engineering.


	Effectiveness for detecting faults within and outside the scope of testing techniques: an independent replication
	Abstract
	Introduction
	Information About the Original Study
	Research Questions
	Participants
	Design
	Artefacts
	Training Materials
	Experimental Objects
	Experimental Materials

	Context Variables
	Execution Procedure
	Pre-session
	During-Session
	Post-Session

	Summary of Results
	InScope Response Variable
	OutScope Response Variable


	Information About the Replication
	Motivation for Conducting the Replication
	Level of Interaction with the Original Experimenters
	Changes to the Original Experiment
	Changes to the Main Factor Levels
	Changes to the Secondary Factor Levels
	Change to the Order of Program Use
	Change to Population Type
	Balancing Experimental Groups
	Training Adaptation
	Localization

	Replication Execution
	Replication Results
	Response Variable: Effectiveness for Faults Within Technique Scope
	Response Variable: Effectiveness for Faults Outside Technique Scope


	Comparison of Replication Results to Original Results
	Consistent Results
	InScope Response Variable
	OutScope Response Variable

	Differences in Results
	Differences with Respect to the Session/Program Factor
	Differences Regarding the Group Factor


	Conclusions and Lessons Learned Across Studies
	Conclusions
	Lessons Learned
	Experiences with Reporting Guidelines
	Future Work

	Appendix
	Appendix A: Descriptive Statistics
	Appendix B: Survey's Data
	Appendix C: Replication's Raw Data
	References



