
Demonstrating the Impact of the PSP on Software Quality and
Effort: Eliminating the Programming Learning Effect

Diego Vallespir, Universidad de la República
Fernanda Grazioli, Universidad de la República
Leticia Pérez, Universidad de la República
Silvana Moreno, Universidad de la República

ABSTRACT

Data collected in the PSP courses indicate that the PSP improves the quality of the products
developed and reduces the development effort. One way this has been determined is through
statistical analysis of the evolution of the results (for example, defect density in unit test) obtained
by the students in each program of the PSP training course. However, since the programs are in
the same application domain, the improvement could be due to programming repetition (i.e., the
learning effect). To explore the reasons for the improvements, we asked the following research
question: Are the improvements observed in the PSP courses due to the introduction of the phases
and techniques of the PSP or to programming repetition? To investigate this we designed and
performed a controlled experiment with twelve software engineering undergraduate students at
the Universidad de la República. The students performed the exercises from the PSP for Engineers
I/II course without applying the PSP techniques. The overall results indicate that the practices
introduced by the PSP and not programming repetition contributed to the performance
improvements.

1 INTRODUCTION

Data collected in the Personal Software Process (PSP) courses indicate that the PSP improves the
quality of the products developed and reduces the development effort [Hayes 97, Rombach 08].
The students (many times software engineers) perform several programming exercises in which
techniques and phases of the PSP are added as the exercises advance. One way it has been
determined that the PSP improves individual performance is through statistical analysis of the
evolution of the results (for example, defect density in unit test) obtained by the students in each
program of the PSP training course. For example, if the programs developed during the course by
the students are of a better quality as the course progresses, then it can be statistically inferred that
the PSP is responsible for the quality improvement.

However, since the programs of the course are in the same application domain, the improvement
could be due to programming repetition (i.e., the learning effect). Recently, a study that compares
the data obtained from different versions of the PSP courses (in which the phases and techniques
of the PSP are introduced at different moments as the exercises advance) concludes that the
changes in quality are most plausible regarding mastering PSP techniques rather than
programming repetition [Grazioli 12].

Our work aims at contributing in this same direction but using a different approach. To explore the
reasons for the improvements, we asked the following research question: Are the performance
improvements observed in the PSP courses due to the introduction of the phases and techniques of

SOFTWARE ENGINEERING INSTITUTE | 1

the PSP or to programming repetition? To investigate this we designed and performed a controlled
experiment with twelve software engineering undergraduate students at the Universidad de la
República. The students performed the exercises from the PSP for Engineers I/II course without
applying the PSP techniques.

The results of our experiment show that there is not an improvement in the performance of the
software engineer concerning product quality and testing effort. This indicates that the practices
introduced by the PSP and not programming repetition contributed to the performance
improvements.

2 EXPERIMENT SETUP

This section presents the goals, metrics, hypotheses, subjects, experimental material and
experimental design.

2.1 Goals, Metrics and Hypotheses

The goal of our experiment is to know if the software engineers improve their performance when
they develop the programs used in the PSP course due to programming repetition in the same
application domain. The aspects of performance that are considered are quality of the product and
the effort required in unit testing.

In order to know the quality of the products we use two measures: defect density in unit test and
total defect density of the program (dependent variables of the experiment). These are normally
used in experiments that involve the PSP. The defect density is measured as the number of defects
per every thousand lines of code (KLOC). The effort used in unit testing is measured also in two
ways: time in unit testing per KLOC and average time in unit testing per defect found.

A statistical hypothesis is an assumption about a population parameter. This assumption may or
may not be true. Hypothesis testing refers to the formal procedures used in experimentation to
accept or reject statistical hypotheses.

There are two types of statistical hypotheses. The null hypothesis, denoted by H0, is usually the
hypothesis that sample observations result purely from chance. The alternative hypothesis,
denoted by H1, is the hypothesis that sample observations are influenced by some non-random
cause. The aim of the hypothesis test is to determine whether it is possible to reject the null
hypothesis H0 [Juristo 01].

The experiment raises the null hypotheses and their respective alternative hypotheses for each of
the four mentioned metrics. The hypotheses aim at knowing if comparing a developed program to
another one developed previously, the software engineer improves his performance in any of the
aspects mentioned.

So, we compare programs by pairs to find if the changes in each performance dependent variable
are statistically significant:

SOFTWARE ENGINEERING INSTITUTE | 2

H0 def ut: Median (Defect density in UT i) = Median (Defect density in UT j)
H1 def ut: Median (Defect density in UT i) <> Median (Defect density in UT j)
Where i, j are the numbers of the programs (1 to 8) and i < j

The same type of null and alternative hypotheses is raised for the other three dependent variables.

2.2 Subjects

The subjects of the experiment are Computer Science undergraduate students of the Universidad
de la República of Uruguay, all of them advanced students since they are in fourth or fifth year.
They have completed the course Programming Workshop in which they learn Java language and
they have at least completed three more Programming courses and a course on Object Oriented
Languages. We consider therefore that the group that participates in the experiment is
homogeneous due to their similar advancement in the career.

The students participate in the experiment in order to obtain credits for their career and that is
their motivation. It is mandatory for them to attend the theory classes (lectures) where the
software development process used (PSP0 and PSP0.1) is presented. It is also mandatory for them
to follow the scripts provided and to collect the data using the tool for that purpose. The students
do not know they are taking part in an experiment, they think they are taking a course with an
important component of laboratory practices. They do know, however, that the data they collect
will be used in research work and they even gave their written consent for it.

Finally, participation in the course by the students is voluntary. This course is not mandatory for
their Computer Science Degree; therefore enrolling in it is optional.

2.3 Experimental Material

The experimental material is made up by the process scripts of PSP0 and PSP0.1, the
requirements of the programs 1 to 8 used in the PSP course and the tool for data collection. All
this material is exactly the same as the one that is used in the PSP for Engineers I/II courses (in
the 8-program version). The tool for data collection is the one distributed by the SEI (PSP support
tool developed in Microsoft Access).

2.4 Experimental Design

The design of this experiment is a repeated measures design. Twelve students develop 8 software
programs following an established process. The 8 programs are the same for the 12 subjects and
are developed in the same order. These programs, as it has already been mentioned, are the ones
used in the PSP for Engineers I/II course.

The students use the PSP0 for the first program and the PSP0.1 for the remaining seven programs.
These two levels of the PSP only aim at collecting data of the process (time, defects, etc.) but they
do not introduce the practices of the PSP (reviews, design, PROBE, etc.). This design of the
experiment makes it possible to know if the students improve the performance due to
programming repetition.

SOFTWARE ENGINEERING INSTITUTE | 3

We refine our goal using the GQM approach [Basili 94] as:
Analyze and compare the data collected at eight program assignments
for the purpose of evaluating individual performance improvements
with respect to defect density in unit testing, total defect density, time spent in unit testing per
KLOC and average time spent in unit testing per defect found
from the viewpoint of a researcher in the context of the PSP0.1 level training of twelve
undergraduate students.

3 RESULTS AND DISCUSSION

Table 1 presents median and interquartile range of the four variables under study for the programs
1 to 8.

Table 1 – Median and interquartile range for the four variables under study

Defect Density in Unit Testing (#defects found in UT / KLOC)

Pr 1 Pr 2 Pr 3 Pr 4 Pr 5 Pr 6 Pr 7 Pr 8

Median 24.55 56.98 18.13 18.48 36.38 18.40 13.78 8.59

IQR 13.65 21.20 31.84 18.14 30.19 17.11 25.11 12.20

Total Defect Density per KLOC (#defects found / KLOC)

Median 111.11 136.59 72.51 74.04 137.00 61.33 63.80 40.06

IQR 49.19 151.87 89.24 51.52 124.61 51.31 83.18 63.14

Time Spent in Unit Testing per KLOC (minutes in UT / KLOC)

Median 331.28 1297.97 301.52 241.94 638.80 652.71 540.85 338.76

IQR 335.59 1044.97 345.24 301.34 1136.47 1297.96 523.87 490.12

Average Time Spent in Unit Testing per Defect (minutes in UT / #defects found in UT)

Median 11.33 16.61 15.00 11.75 20.50 37.00 29.00 39.00

IQR 7.75 17.46 10.00 15.75 12.17 40.75 37.00 28.25

The students of our experiment are 12 (few samples) and the data of each one in the 8 exercises of
the PSP are considered (repeated measures). In a context of few samples and repeated measures
the most suitable statistical hypotheses test is the Wilcoxon signed-ranks test [Wilcoxon 45]. This
test is used to compare two sets of scores that come from the same subjects and when normality
cannot be assumed. It is the non-parametric test equivalent to the dependent t-test. We used the 2-
tailed Wilcoxon test because we do not know a priori if the dependent variables will increase or
reduce their values.

Table 2 presents the result of applying the Wilcoxon test to each pair of programs for the
hypothesis of defect density in unit test (DDUT). The table presents the comparison between pairs
of programs. Each cell contains the p-value (2-tailed) of the Wilcoxon test. The cells in green or
red indicate that the null hypothesis has been rejected (p<=0.05). The green ones also indicate that
there has been an improvement in defect density in UT as the students advance in the exercises;
the red ones indicate the opposite. The grey cells indicate that it has not been possible to reject the
null hypothesis.

SOFTWARE ENGINEERING INSTITUTE | 4

It can be observed that it is statistically significant that the defect density in UT for program 2 is
higher than in the rest of the programs. There is one motive that can explain this behavior.
Program 2 of the PSP course is the only one that is not a mathematical program. Exercise 2
consists in developing a program to count lines of code of a program. Although this can be a cause
for a higher defect density, we cannot assure so.

Table 2 – Wilcoxon test for DDUT

Prog. 2 3 4 5 6 7 8

1 p=0.028 p=0.722 p=0.158 p=0.347 p=0.136 p=0.388 p=0.006

2 p=0.006 p=0.003 p=0.019 p=0.002 p=0.010 p=0.002

3 p=0.754 p=0.084 p=0.937 p=0.754 p=0.272

4 p=0.117 p=0.929 P=1.000 p=0.136

5 p=0.015 p=0.084 p=0.006

6 p=0.929 p=0.084

7 p=0.209

It can also be observed that in program 5 the defect density in UT is statistically higher than the
one found in programs 6 and 8. But the hypothesis cannot be rejected between programs 5 and
programs 3, 4, and 7.

These results show there is not a continuous improvement as regards defect density in UT.
Removing exercise 2 from the analysis, no difference can be detected between exercise 3 and the
following, or between exercise 4 and the following, or 6 and the two following, neither between
exercises 7 and 8. The differences found between exercises 5 and 6, and between exercises 5 and
8 may be due to the characteristics of exercise 5. However, other experiments are necessary to
prove it. This is different from the improvements found when the regular course is used [Hayes
97, Rombach 08].

Table 3 presents the result of applying the Wilcoxon test to each pair of programs for the
hypothesis of total defect density (TDD) per KLOC. The colors are used in the same way as in
table 2.

Table 3 – Wilcoxon test for TDD per KLOC

Prog. 2 3 4 5 6 7 8

1 p=0.239 p=0.239 p=0.010 p=1.000 p=0.004 p=0.041 p=0.008

2 p=0.034 p=0.010 p=0.158 p=0.003 p=0.006 p=0.005

3 p=0.695 p=0.182 p=0.041 p=0.530 p=0.034

4 p=0.050 p=0.108 p=0.480 p=0.050

5 p=0.004 p=0.084 p=0.012

6 p=0.754 p=0.347

7 p=0.158

Programs 6 and 8 show an improvement in the total density of defects injected compared to
previous programs. However, this does not happen with program 7 which only shows an

SOFTWARE ENGINEERING INSTITUTE | 5

improvement compared to programs 1 and 2. Although we can observe that statistically there is
not a continuous improvement, we do observe that programs 1, 2 and 5 show a higher number of
injected defects than the rest of the programs. In programs 6 and 8 the subjects have less injection
of defects. This improvement may be due to the fact that the subjects record their own injected
defects from program 1. This practice, not carried out normally, raises awareness of the type of
defects that the person usually injects, apparently provoking a fewer number of injected defects.

Table 4 presents the result of applying the Wilcoxon test to each pair of programs for the
hypothesis of time spent in unit testing (TSUT) per KLOC. The red color indicates statistical
evidence of an increase in the time spent, green indicates a decrease and grey indicates that the
null hypothesis could not be rejected.

Table 4 – Wilcoxon test for TSUT per KLOC

Prog. 2 3 4 5 6 7 8

1 p=0.005 p=0.937 p=0.388 p=0.023 p=0.019 p=0.308 p=0.754

2 p=0.023 p=0.003 p=0.209 p=0.433 p=0.034 p=0.003

3 p=0.530 p=0.117 p=0.136 p=0.480 p=0.638

4 p=0.012 p=0.015 p=0.209 p=0.480

5 p=0.209 p=0.308 p=0.041

6 p=0.117 p=0.028

7 p=0.530

As it can be observed, in this case there is not a steady improvement in the performance either. In
this case the improvement considered is to reduce the necessary time in UT per KLOC. The
results show that it is worse in program 5 (compared to 4) and also in program 6 (also compared
to 4). Program 8 shows an improvement concerning programs 2 to 5 and 6. However, there is no
statistical evidence of an improvement concerning programs 3 and 4. This shows that
programming repetition (using these programs) does not result in an improvement in the time
spent in UT per KLOC.

Table 5 presents the result of applying the Wilcoxon test to each pair of programs for the
hypothesis of average time spent in unit testing (TSUT) per defect found in UT. The colors are
used in the same way as in table 3.

Table 5 – Wilcoxon test for average TSUT per defect

Prog. 2 3 4 5 6 7 8

1 p=0.050 p=0.155 p=0.575 p=0.059 p=0.021 p=0.047 p=0.010

2 p=0.859 p=0.389 p=0.929 p=0.038 p=0.093 p=0.010

3 p=0.214 p=0.386 p=0.051 p=0.386 p=0.041

4 p=0.594 p=0.051 p=0.093 p=0.009

5 p=0.008 p=0.047 p=0.004

6 p=0.575 p=0.878

7 p=0.790

SOFTWARE ENGINEERING INSTITUTE | 6

The results indicate that in the last three programs the UT average time per defect found in
general increases. In particular, program 8 presents statistical evidence that the average time spent
in UT per defect found is more than the one used in programs 1 to 5. Therefore, the results show
that in the last programs the efficiency of UT (defects found per unit of time) decrease. This can
be due to several reasons: less number of defects that reach the UT phase, more tests carried out
that lead to a greater effort in UT and less effectiveness in the tests (percentage of defects found in
the total of defects that get to UT).

We have already shown in the first analysis that the defects that get to UT do not decrease per
KLOC statistically for certain comparisons between programs, in particular many of the ones that
are presented in red here. On the other hand, the effort per KLOC in UT even decreases for some
pairs of programs that appear in red here. The last possible reason (effectiveness of UT) cannot be
discussed within the frame of our experiment. Therefore, we cannot clearly establish the reason
for the loss of efficiency in UT in the context of this experiment.

To sum up, since the experiment does not change the level of PSP used (PSP0.1 from program 2
to 8) the results of this experiment indicate that the programming repetition in the same
application domain and the collection of data of the processes:

• Do not continuously improve defect density in UT.

• Seems to improve in the last 3 programs the total defect injection (This can be due more to
the data collection about the defects injected than to the learning effect of the application
domain).

• Do not continuously improve the time spent in UT per KLOC.

• It seems to deteriorate the efficiency of UT.

4 CONCLUSIONS AND FUTURE WORK

The presented results contribute to the elimination of an important threat to the validity of
different experiments performed with the PSP. This result agree with a previous one [Grazioli 12],
which indicates that the practices introduced by the PSP and not programming repetition would
contribute to the improvement of individual performance. Moreover, as both studies show the
same kind of results by following different approaches, the confidence of what is being conclude
increases. Besides, it is found that there is a different behavior in program 2 and in program 5
regarding software quality. This behavior, which we showed is independent from the PSP
practices, has to be analyzed more deeply performing new controlled experiments.

Besides, this experiment shows that without the adequate practices the quality of software and the
performance of the process cannot be improved by the simple reason of the programming learning
effect. Someone once said, “Insanity is when you keep doing the same things expecting different
results”1. In other words, it is impossible to improve without implementing changes. In fact, the
changes suggested by the PSP are the ones which generate the improvements in the performance
of the software engineer.

1 This quote or a variant of the same is attributed to different persons, among them, Albert Einstein, Rudyard
Kipling, Rita Mae Brown, Benjamin Franklin and a Chinese proverb. I could not find out who the real author of
that phrase is

SOFTWARE ENGINEERING INSTITUTE | 7

Our future work is to compare the data we have obtained with the results that are normally found
in the PSP courses. We also intend to replicate this experiment, analyze other data and design a
more complex experiment that will enable us to isolate and study the different practices of the
PSP and the synergy produced between them.

5 REFERENCES/BIBLIOGRAPHY

[Basili 94]
Basili, Victor; Caldiera, Gianluigi; Rombach Dieter: The Goal Question Metric Approach, in
Encyclopedia of Software Engineering (John J. Marciniak, Ed.), John Wiley & Sons, Inc., Vol. 1,
pp.528-532, 1994.

[Grazioli 12]
Grazioli, Fernanda; Nichols, William; A Cross Course Analysis of Product Quality Improvement
with PSP. TSP Symposium 2012 Proceedings, Special Report, Software Engineering Institute,
Carnegie Mellon, CMU/SEI-2012-SR-015: 76-89, 2012.

[Hayes 97]
Hayes, Will; Over, James; The Personal Software Process: An Empirical Study of the Impact of
PSP on Individual Engineers. Technical Report, Software Engineering Institute, Carnegie Mellon
University, CMU/SEI-97-TR-001, 1997.

[Juristo 01]
Juristo, Natalia; Moreno, Ana M.; Basics of Software Engineering Experimentation. Kluwer
Academic Publishers, 2001.

[Rombach 08]
Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts S.; Burton, Dan; Teaching
Disciplined Software Development. The Journal of Systems and Software 81, (5): 747-763, 2008.

[Wilcoxon 45]
Wilcoxon, Frank; Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80-83,
1945.

SOFTWARE ENGINEERING INSTITUTE | 8

	ABSTRACT
	1 introduction
	2 Experiment setup
	3 results AND DISCUSSION
	4 conclusions and future work
	5 references/bibliography

