

Formulario de aprobación de curso de posgrado/educación permanente

Asignatura: Dinámica de interfaces: Dispers	sión, Floculación y Flotación.	
Modalidad:	Posgrado	X
	Educación permanente	X
Profesor de la asignatura: Dr. Gustavo Sánch Universidad de la República.	nez, Profesor Agregado, Instituto	de Ingeniería Química,
Profesor Responsable Local: Dr. Gustavo Sánd Universidad de la República.	chez, Profesor Agregado, Institut	o de Ingeniería Química,
Otros docentes de la Facultad: MSc. Santi- Universidad de la República.	ago Seiler, Asistente, Instituto	de Ingeniería Química,
Docentes fuera de Facultad:		
Programa(s) de posgrado: Maestría y Doctorado	o en Ingeniería Química, Maestría	a en Ingeniería de Minas.
Instituto o unidad: Instituto de Ingeniería Químic	ca.	
Departamento o área: Departamento Ingeniería	de Materiales y Minas.	
Horas Presenciales: 20		
Nº de Créditos: 4		
Público objetivo: Estudiantes de posgrado en I Facultad de Ingeniería o de otros servicios de la la asignatura para su programa de formación.		
Cupos: sin cupo		
Objetivos: Introducir a los estudiantes los cor incluyendo conceptos termodinámicos, interfacinteracciones entre partículas finas. Estos con procesos, tales como dispersión, floculación y minerales, química y cerámica.	ces sólido – líquido – gas, inte nceptos fundamentales serán ap	erfaz sólido – líquido e olicados para diferentes
Conocimientos previos exigidos: Título univers	_ sitario en área afín (ingeniería, qu	ıímica, ciencias).
Conocimientos previos recomendados:		
Metodología de enseñanza:		

Descripción de la metodología: Clases teóricas presenciales las que estarán centradas en la presentación de los temas propuestos. Clases prácticas y de laboratorio presenciales.

Detalle de horas:

Horas de clase (teórico): 16

- Horas de clase (práctico): 2
- Horas de clase (laboratorio): 2
- Horas de consulta:
- Horas de evaluación:
 - Subtotal de horas presenciales: 20
- Horas de estudio: 20
- Horas de resolución de ejercicios/prácticos: 5
- Horas proyecto final/monografía: 15
 - Total de horas de dedicación del estudiante: 60

Forma de evaluación:

Prueba final individual.

Temario:

1. Superficies

Conceptos termodinámicos. Energía libre. Enlaces. Exceso de energía superficial. Tensión superficial. Curvatura de superficies. Presión de vapor sobre superficies curvas. Reconstrucción y alabeo de superficies.

2. Interfaces sólido – líquido – gas

Capilaridad. Angulo de contacto. Tensión interfacial. Mojabilidad de superficies sólidas.

3. Interfaz sólido – líquido

Interacciones ácido-base. Trabajo de adhesión y trabajo de cohesión. Carga eléctrica en interfaz sólido-líquido. Efecto de la carga eléctrica sobre la superficie del sólido. Doble capa eléctrica. Potencial zeta.

4. Interacciones entre partículas finas

La teoría DLVO de la estabilidad coloidal. Dispersión. Coagulación. Efecto de los polímeros en la estabilidad coloidal. Estabilidad estérica y floculación.

5. Surfactantes

Propiedades. Actividad superficial. Isoterma de adsorción de Gibbs. Adsorción de la solución a los sólidos. Adsorción de tensoactivos iónicos sobre superficies cargadas. Efecto de los tensoactivos sobre la mojabilidad de las superficies sólidas.

6. Flotación

Colectores: sus propiedades, aplicaciones. Modificadores: activadores, depresores, dispersantes, reguladores de pH. Espumantes: espumas, coalescencia de burbujas y estabilidad de la espuma, espumas de flotación, efecto de espumantes en el rendimiento de flotación, aplicación de espumantes en procesos de flotación.

7. Aplicaciones

Flotación de sulfuros, óxidos, carbón y minerales industriales; procesamiento cerámico.

Bibliografía:

Surface Chemistry of Froth Flotation – J. Leja – Springer - ISBN 978-1-4615-7977-9 – 1982 Introduction to Ceramics – W. D. Kingery – John Wiley & Sons Inc - ISBN: 978-0-471-47860-7 – 1960 Introduction to the Principles of Ceramic Processing – James S. Reed - John Wiley & Sons Inc – ISBN: 0-471-84554-X – 1988

Will's Mineral Processing Technology – B.A. Wills, T.J. Napier-Munn – Elsevier – ISBN: 978-0-7506-4450-1 – 2011 Coagulation and Flocculation, Surfactant Science Series Vol. 126 – H. Stechemesser, B. Dobias – Taylor & Francis – ISBN:978-1-4200-2768-6 – 2005

Datos del curso

Fecha de inicio y finalización: Del 21/10 al 20/11 de 2025

Horario y Salón:

Arancel:

[Si la modalidad no corresponde indique "no corresponde". Si el curso contempla otorgar becas, indíquelo]

Arancel para estudiantes inscriptos en la modalidad posgrado: -

Arancel para estudiantes inscriptos en la modalidad educación permanente: 1500 UI

Actualizado por expediente n.º: 060170-000172-24