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Chapter 1

Introduction

The objective of this thesis is to develop mathematical models of vision which
integrate empirical data from three different scientific areas: phenomenology
of perception, cognitive neurosciences and image statistics. We mainly focus
on low level vision tasks and in particular we are interested in the completion
and grouping of contours. Our scope is to identify common properties and
structures within the experimental data and to explain them in terms of
simple invariance principles, common to the three fields.

This work could be considered as a part of a project for naturalizing phe-
nomenology. An in-depth insight to these contemporary issues is discussed
in [76]. According to this book, naturalization is the process by which phe-
nomenology is made coherent and compatible with natural science, filling the
gap between the science of nature and the science of mind. Of course this
is a long term objective (a utopia perhaps) and there are different positions
between the various schools of philosophers, which we are not able discuss
here.

In the field of the phenomenology of perception, the integration of contours has
been largely studied by the Gestalt theory since the beginning of the twentieth
century [94]. The Gestalt psychology established basic “grouping laws” which
are crucial in constructing a phenomenological representation of the physical
world. The basic idea is that points (or previously formed visual objects)
having one or several characteristics in common, are grouped together to form
a new, larger visual object, a gestalt. A central concept of the Gestalt is that
the grouping laws are independent from past experience. More recently, many
psychophysical experiments allowed to measure the quantitative parameters
of these laws underlying perception. This quantitative approach allows to
formulate mathematical and computational models of Gestalt (see for example
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2 CHAPTER 1. INTRODUCTION

[18]). A particular interest of this thesis is the concept of association fields
introduced by Field, Hayes and Hess [29] which encodes different Gestalt
principles such as good continuation and proximity.

In neurophysiology, most of the neural processing for boundary coding in
highly evolved mammals, including humans, is performed by the primary
visual cortex (V1). This evidence emerges from an impressive amount of
experiments based mostly on measuring the neural activity by means of
dye-electrode recording and cortical imaging. For example, simple cells
in V1 are considered basic elements for boundary coding. Nowadays it is
clear that neural computations and its image analysis strictly depend on
the functional architecture of the cortex. Indeed, in V1, the fundamental
structures implemented in the neural circuitry are closely related to contour
grouping [41].

Finally, statistical analysis of natural images by means of information theory
produces data structures that can be compared with psychophysical and
neurophysiological results. Possible isomorphism’s between the structure of
the environment, gestalt and neural connectivity may be due to evolution and
plasticity processes (an adaptation of our sensory system to the environment).
Then, it might be of great interest to estimate statistical structures of natural
images by analyzing large databases of pictures from arbitrary natural scenes
[87].

Our aim is to formally model the experimental data provided by the three
different scientific fields mentioned above within a suitable mathematical
framework. The framework was introduced by Hoffman in [39], who under-
stood that the primary visual cortex is a fiber bundle equipped with a contact
structure. In [75, 73] J. Petitot and Y. Tondout reassessed the model of W.
Hoffman by modelling the cortex as a jet-bundle equipped with a contact form
and proving that this structure is coherent with contemporary psychophysical
and neurophysiological findings. Similar ideas taking into account a differ-
ential geometry approach were introduced by S. Zucker [6]. In [82, 14] G.
Citti and A. Sarti reconsidered the cortical structure as a Lie group equipped
with a sub-Riemannian metric, inheriting from Hoffman the capability of
modelling higher perceptual tasks by stratification of groups. In a recent
article [13], P. Chossat and O. Faugeras proposed that the hypercolumns of
orientations encode the structure tensor so the cortex may be modelled as a
space of 2D symmetric tensors. Then, the time evolution of the activity in
the cortex is governed by a Wilson-Cowan equation type [97], operating under
the appropriate mathematical space which takes into account the rotation
and translation symmetries.
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In this setting we are able to identify the main original contributions of the
thesis:

• a new empirical domain is introduced assessing the statistics of natural
images;

• due to the intrinsic statistical character of the acquired data a suit-
able stochastic mathematical framework is introduced in the invariant
geometrical settings;

• isomorphism’s between the three empirical domains have been identified
and modelled.

The thesis is organized as follows:

Chapter 2 starts by briefly reviewing the Gestalt theory and some of its basic
laws. It describes how from a pyramidal composition of Gestalts a perceptual
reality is created, formed by a discrete number of visual objects emerging
from a background. Then the perceptual completion phenomenon is discussed,
distinguishing between the amodal and modal completion. The first refers
to the reconstruction of the “under” of the physical image (the background
or an occluded object) while the second refers to illusory contours (building
perceptual units indistinguishable from real stimuli). In both cases there are
points belonging to more than one perceptual object at the same time. This
suggests that the dimension of the phenomenological space is higher than that
of the physical one. The chapter ends by describing one key psychophysical
experiment related to contour organization which inspired the concept of
association fields, and it is the classical result of Field, Hayes and Hess [29].
Then, a recent experiment [57] which has elucidated certain new properties
of trans-axial association fields is carefully reviewed.

Chapter 3 collects various results from neurophysiological experiments. The
objective is to describe the functional architecture of V1 and how neural
computations strictly depend on it. First, receptive fields of simple cells
are interpreted as elements for contour detection. Then the three main
structures implemented by neural circuitry are described: the layered, the
retinotopic and the hypercolumnar. Next, the pinwheel structure is introduced
as the real topological implementation of the hypercolumns. Finally, the well
known experiment of Bosking et Al. [11], which revealed the cortico-cortical
connectivity pattern, is described.

Chapter 4 reviews the functional architecture of the V1 geometrical model
introduced by Citti and Sarti in [14]. Following ideas first introduced by
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Hoffman and Petitot, the hypercolumnar structure is described as a fiber
bundle where the role of simple cells as orientation detectors leads to a notion
of a cotangent bundle. The structure is also identified with the Euclidean
Motion Group SE(2), the 3D Lie group of transformations invariant to
translations and rotations in the plane. Then, a differential structure is
considered, in order to model the long range co-axial horizontal connections
between hypercolumns. The structure is formalized as the Lie algebra of the
SE(2) with a sub-Riemannian structure. The integral curves of its generating
vector fields model the co-axial association fields.

Chapter 5 presents an implementation of the perceptual completion model
proposed by Citti and Sarti in [82, 14]. Within the model, an image was lifted
onto a surface in the SE(2) space. The completion was achieved by means of
a propagation process modelled as a two step algorithm inspired by neural
architectures. The original work provided proof that the algorithm converges
to a diffusion driven mean curvature flow in the sub-Riemannian settings
and an implementation of the mean curvature flow was proposed to provide
completion. In this chapter we directly implement the two step algorithm of
diffusion-concentration that permits representation of simultaneous occluded
and occluding objects. The diffusion process, modelling cortical propagation,
is restricted to the sub-Riemannian differential structure. The implementation
of the completion algorithm is the first original contribution in the thesis.
This work was published in [79, 80].

Chapter 6 links the sub-Riemannian model with a well known probabilistic
approach to the perceptual completion problem introduced by D. Mumford
[62]. Mumford proposed modelling the probability of the reappearance of an
occluded contour in a natural scene with a particular Fokker Planck equation
in the space of position and orientations. This hypothesis was the inspiration
for successive models which use in different ways the same Fokker Planck
equation to address propagation and enhancement of contours [95, 4, 20].
Some of the works identified the group of positions and orientations with
the SE(2). The novelty introduced in this Chapter is the interpretation of
the Mumford’s Fokker Planck operator as a natural propagation equation
in the cortically inspired structure. We introduce a new time-independent
fundamental solution of the Fokker Planck operator which models the lateral
connectivity in the cortex. This operator is better suited as a connectivity
pattern than the sub-Riemannian heat kernel which was used in Chapter 5
to propagate the cortical activity. Then, we provide an analytical approxima-
tion and a numerical computation of the fundamental solution. Finally, an
interpretation of the orientation distribution as a second order tensor allowed
us to compare these methods with another well known heuristic perceptual
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completion algorithm, the Tensor Voting of G. Medioni [58]. Some of the
results in this chapter are published in [81].

Chapter 7 deals with the computation of the distribution of oriented edges
from a large data set of natural scenes and models the acquired results in
sub-Riemannian settings with both deterministic and stochastic instruments.
The Chapter starts by reviewing previously reported histograms of edge co-
occurrences computed in natural image databases. Then, a technique for the
estimation of co-occurrence probability of relative positions and orientations
is used to obtain a translation-orientation invariant 3D histogram. The
histogram is compared with psychophysical and neurophysiological data.
From the deterministic point of view, we show that the histogram encodes
the association fields. In the stochastic framework, the time independent
Fokker Planck fundamental solution well fits the probability of co-occurrence.
This is one of the most notable results of the thesis. Parametric identification
between the Fokker Planck and the co-occurrence histogram is provided. The
results of this chapter are published in [81].

In Chapter 8 the feature of scale is added to the features of boundary orien-
tation. This leads to consider a 4 dimensional histogram and the affine group
(the Lie group invariant to rotations, translations and scaling transformations).
The extension of the cortical model was provided by Sarti, Citti and Petitot
in [84] where a symplectic structure is introduced. The scale takes the form
of the distance from a boundary. Then, it is possible to take into account the
interior of the objects. Using analogous considerations to the ones in [14],
two sub-Riemannian structures are used as models for the connectivity. One
is inherited from the SE(2) model and models the co-axial connectivity. The
other is responsible for trans-axial connectivity and it is morphologically dif-
ferent from the previous one. Finally, a differential operator for modelling the
trans-axial connectivity is introduced by analyzing natural image’s statistics.

Chapter 9 is devoted to trans-axial association fields recently reported in
[57] and reviewed in Section 2.4. These association fields basically describe
the perceptual saliency of the parallel structure which have a morphological
difference with the co-linear structure. First, the psychophysical data is re-
analyzed to achieve a format compatible to a subsequent comparison with the
statistics of natural images and with neurophysiological models. It is shown
that the statistical distribution of parallel and co-linear edges is coherent with
the psychophysical data. On the other hand, the connectivity predicted by
the symplectic model is in agreement with these association fields.

The last Chapter is devoted to conclusions.
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Chapter 2

Phenomenology of perception

2.1 Introduction

Visual perception is not a simple acquisition of the real stimulus, but the result
of a series of complex processes able to mediate between the physical stimulus
and the phenomenological organization. According to Gaetano Kanizsa, one
of the main exponents of the Gestalt psychology:

“Perception is not a mere passive recording of information im-
pressed upon my sensory organs by the environment. Rather, it
consists of an active construction by means of which sensory data
are selected, analyzed, and integrated with properties not directly
noticeable but only hypothesized, deduced, or anticipated, according
to available information and intellectual capacities.”

In his book “Grammatica del vedere” [46], Kanizsa supported this positions,
by studying in depth the perceptual phenomena on synthetic images, focusing
in particular on the phenomenical presence of boundaries without physical
stimulus (as for example in the well known triangle of Kanizsa shown in Fig.
2.6), describing the mechanisms of modal and amodal completion.

In this section we briefly recall the main concepts developed by the Gestalt
theory, assessing the main grouping laws: proximity, similarity, good continu-
ation, alignment, closure.

In particular we are interested in the property of good continuation and
alignment, which is the basis of the phenomena of boundary completion.
This phenomenon studied in depth by Fields, Hayes and Hess [29], who

7



8 CHAPTER 2. PHENOMENOLOGY OF PERCEPTION

experimentally tested the ability of subjects to detect a target alignment
composed of small Gabor-like patches (see Fig. 2.8). The result of their
experiments is summarized in a graph of so called association fields, which
illustrates the set of all possible subjective boundaries starting from a fixed
point.

Finally we move on to other perceptual phenomena such as parallelism and
scale.

2.2 Gestalt theory

The movement of the Gestalt theory was started by Wertheimer, Köhler and
Koffka, who considered perceptual phenomena as global events, not reducible
to the set of the parts, well described by von Ehrenfels:

“The whole is more than the sum of the parts.”

Hence “grouping” is a crucial process in visual perception: whenever points
(or previously formed visual objects) have one or several characteristics in
common, they become grouped and form a new, larger visual object, a gestalt.

The first concept developed by the Gestalt theory was the articulation of the
visual field in figure and ground, representing the minimal structure of visual
perception. In the case of ambiguous figures the problem of the selection of
figure-ground is particularly evident: a cup or two profiles are perceived as a
figure, following the specific figure-ground selection (Fig. 2.1).

Figure 2.1: The Rubin vase. An optical illusion, which may be perceived
either as a vase or as two human profiles facing each other. This illusion was
created by the Danish psychologist Edgar Rubin.
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The basic idea of the Gestalt theory is that there exist laws which allow
emergence of figures without any mediation of past experience. These charac-
teristics were defined as laws that describe the influence of global context in
the perception of local features. Elements tend to be perceptually grouped
and made salient in the following cases:

• proximity: Elements are close to each other, and apart enough from
the rest of the elements to form a group or a cluster (see Fig. 2.2)

Figure 2.2: An example of grouping according to proximity. In the left and
right image there are the same set of points, but on the right the points are
grouped by the proximity constraint. This example was taken from [46].

• similarity: Elements similar in color, shape, texture or orientation are
grouped together. Each one of these provides a partial gestalt (see Fig.
2.3).

Figure 2.3: An example of grouping according to similarity. Similarity wins
over proximity in this instance.

• closure: The perception is even stronger in case of closed contour. In
this case, we have a pop up of the figure, in the sense that we perceive
an object, defined by the closed contours (see Fig. 2.4).
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Figure 2.4: An example of grouping according to closure. This example was
taken from [46].

• good continuation and alignment: Elements aligned or with com-
parable alignment tend to form a continuous curve (see Fig. 2.5).

From the above experiments we can observe that:

• the perceptual reality is formed in each time by a discrete number of
objects;

• these objects do not necessarily depend on the existence of correspondent
physical objects

• the segmentation of the phenomenological space between objects and
background depend on precise stimulation conditions.

More than one grouping law at a time can contribute to the perception of a
complex object. For example while perceiving a region enclosed by a contour
several gestalt can play a role: alignment of the boundary, closure, convexity,
similarity in color of the points within the interior (see Fig. 2.5). Moreover,
gestalts can be applied iteratively, to the atomic input, and then to the partial
gestalts already recognized.
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(a)

(b) (c) (d) (e)

Figure 2.5: This image (a) is formed by four pieces (b). It is usually
interpreted as the intersection of the two curves shown in (c) instead of the
configuration of the two tangent curves (d). Nevertheless if the segment is
closed las in (e) the tangent configuration emerges, due to the closure law.
This example is inspired from the Figures 1.30 and 1.37 of Kanizsa’s book
[46].

2.3 Perceptual Completion

Every time that a figure is segmented, the ground is perceived as completed
“under” the figure. Since the occluded background underlies the occluding
figure, it is completed without any sensory counterparts. This phenomenon is
called by Kanizsa “amodal completion”. Amodal completion is a fundamental
process taking place every time that

• a figural unit is produced (occluding the background);

• a figure occludes another figure;

• a figure is self-occluding.
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An example of amodal completion due to occlusion is presented in Fig. 2.6
left.

Figure 2.6: (Left) An example of amodal completion. The figure is perceived
as a black circle occluded by the gray square. The circle is present in the
visual field, but the completion is performed without an illusory contour.
(Right) The Kanizsa triangle [46]. A white triangle occluding three black disks
is phenomenologically perceived. There is an apparent contour separating the
triangle from the figure, indeed the interior looks whiter than the background.
There is also a stratification of figures, the triangle emerges and seems to be
above the disks. This type of phenomenon is classified by Kanizsa as modal
completion.

On the other hand missing parts of a figure can be completed, creating a
perception that is phenomenologically indistinguishable from real stimuli.
Since the completed figure is perceived with the modality of vision, the
underlying process is called “modal completion”. It gives rise to the well
known phenomenon of illusory boundaries (or subjective contours).

It often takes place in order to complete occluding objects (in Fig. 2.6 right,
the completed triangle is occluding the 3 circles).

A point made clear by the studies of phenomenology in perception is that in
all circumstances of completion both the occluding and the occluded objects
are perceived at the same time in the scene and therefore there are points in
the input stimulus corresponding to more than one figure at the perceptual
level. This suggests that the phenomenological space has a higher dimension
than that of the physical space, in this case the two dimensional image.
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2.4 Association Fields of coaxial elements

A central idea of the Gestalt psychology is that continuity is an essential
notion in perception. More recently, partially motivated by this fact, cognitive
neuroscience has renewed its attention in the representation of contours and
their integration. Indeed, over the last twenty years hundreds of papers have
been published in the fields of neurophysiology, psychophysics and computer
sciences, combining approaches to elaborate models of how contours are
perceived and integrated [28].

In order to study the perceptual integration of contours Field, Hayes, and Hess
introduced in [29] two types of stimulus. Both types of stimulus consisted of a
smooth path of spatially separated elements, embedded in a field of randomly
oriented elements. In one type of stimulus (snakes or co-axial), the elements
are arranged tangentially to a path. In the other type (ladders or trans-axial),
the elements are orthogonal to the path.

Figure 2.7: The 2 figures show grids made of oriented segments. In the left
figure all the segments are randomly oriented and there is not perception of
any structure while in the grid in the right figure some of them are aligned.
A perceptual structure emerges and this effect is known as “pop out” or
perceptual saliency.

Particularly in [29] is exploited the concept of association fields for coaxial
elements. The basic idea is simple: if we consider a set of randomly distributed
small segments, there is not perception of any kind of structure, but, when
some of the elements are aligned a contour emerges from the background
(see Fig. 2.8). A classical result from the Gestalt theory, the law of good
continuation. The segments tend to be perceptually grouped and made
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salient if they form a continuous contour. Earlier works studied the problem
of detecting contours composed of dots or short line segments (called test
elements) embedded in a field of similar elements of random position and
orientation (as in Fig. 2.7). The problem of these experiments, as pointed out
in [36], is that their nature (wide spatial and orientation spectrum) leaves open
the possibility that simple filtering is able to resolve the task of integrating the
test elements into a single contour. Therefore, the oriented elements selected
in [29] were Gabor like functions (referred to as Gabor patches) which have a
dot like spectrum and they approximately match the tuning properties of the
simple cells in V1 (this point will be detailed in the next two chapters).

Figure 2.8: Test images of psychophysical experiments, similar to those used
by Field, Hayes and Hess [29]. The experiment consists of showing to subjects
a grid made of oriented Gabor patches. In some images, the grid contains
elements aligned over a path and other similar patches randomly distributed.
In the other cases, each oriented element is placed randomly. The task for
the participant is to detect whether there are or not aligned elements in the
grid (a forced choice between two alternatives 2AFC).

The experiment tested the ability of subjects to detect a target composed of
small Gabor patches aligned to form a smooth contour with the two-alternative
forced choice (2AFC) method. The 2AFC is a classical methodology used
to measure human performance in psychophysical tasks, where stimuli with
different target intensities have to be discriminated [47]. It signifies that an
observer should indicate which one of two stimuli presented in a trial contains
a target, with the target presented in only one of the two stimuli. The target
was embedded in a large field of similar oriented random elements. The
distances between the elements were larger than the dimension of a single
element (see Fig. 2.8).

They found that the target detectability depended on several factors, most
importantly, the relative orientation of adjacent contours elements. The
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structure is perceived correctly if the patches are aligned tangentially to the
path and the angle variation between two adjacent elements is not too large.
The perception is described as a phenomenon of “pop-out” or perceptual
saliency. Targets could be detected if the orientation of adjacent contours
elements are small. The effect was robust over a range of element densities
and presentation times.

Based upon these results Field et al. suggested that local interactions between
contour elements follow specific rules and form the basis for contour integration
in humans. These constraints form a local association field that govern how
different oriented contours should interact to form a coherent group (see Fig
2.9).

Figure 2.9: In the left figure the solid line indicates a configuration between
the patches where the association exists while the dashed line indicates a
configuration where it does not. The right figure shows the association field
of Field, Hayes and Hess (images taken form [29]).

2.5 Association Fields of trans-axial

elements

A similar but weaker effect in detectability was observed when elements were
oriented perpendicular to the contour (ladder or transaxial). In a recent
experiment [57], the authors carefully compared the two different types of
perceptual integration mechanisms using 2AFC. The stimulus used by the
authors consisted of images of odd-symmetric Gabor elements embedded
into a grid, as in the previous experiment. In that experiment the snake
target consisted of a configuration where the Gabor elements are arranged
tangentially to a path. On the contrary, in the ladder target, the axis of the
Gabor patches are perpendicular to the path (see Fig 2.10 bottom). Besides
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the elements in the path there are other randomly distributed and oriented
patches on the grid.

Figure 2.10: Test image of the ladder experiment, similar to those used in
[29] or in [57].

Previous works demonstrated that ladders are usually harder to identify than
snakes [29, 37, 8, 52, 56], but [57] was the first work to test systematically
a set of parameters: the Gabor element separation, the path angle and the
carrier wavelength, by using a sampling of the parameter space.

The 2AFC procedure followed by the authors in [57] consisted of presenting
sequences of trials to a subject. Each sequence corresponded to a particular
combination of carriers wavelength, element separation and contour type
(snake or ladder). The separation between elements s is measured in degrees
of the visual field and takes values between 1.09◦, 1.54◦, 2.18◦ and 3.08◦. The
carrier wavelength cw (measured in the same units) takes values between
0.193◦, 0.273◦, 0.385◦ and 0.545◦. In a single session only the path angle α
was varied and took values between 0◦, 10◦, 30◦ or 40◦. The paths considered
were created following the co-circularity rule: two adjacent elements in a
contour are tangent to the same arc of circumference (see Fig. 2.11).

Two subjects performed the experiment. Each one was presented with a
sequence of 40 trials for each combination of parameters. Each trial consisted
of two stimuli presented sequentially, one containing a contour and the other
only random elements. The order in which the stimuli were presented was
determined randomly. The subjects were asked to indicate which stimuli
had the contour, and received an auditory feedback to indicate whether
the response was correct or not. Figure 2.12 summarizes the results of the
experiment relating the performance level with respect to elements separation.
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Figure 2.11: A schematic representation of part of a snake-type target used in
the experiment from [57]. Here the Gabor patches are positioned tangentially
to the path while in the ladders the elements are orthogonal to it. The
thick solid line represents the backbone of the contour. The difference in
orientation and the separation between the patches are the angle α and the
scalar s respectively. The parameter s and α are chosen in such a way that
the patches are tangential to the same arc of circumference.

Figure 2.12: Performance levels collapsed across path angle. The different
lines on the graphs show the data for snakes and ladders with different carrier
wavelengths (image taken from [57]).
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As a conclusion of the experiment they observed this interesting finding,
summarizing an important distinction between snakes and ladders :

“increasing the separation between the elements had a disruptive
effect on the detection of snakes but had no effect on ladders,
so that as separation increased, performance on the two types
converged”

We will try in the following chapters to model the set of phenomenological
behavior presented in this section with a suitable mathematical framework. To
setup the framework we are going to be motivated by the neural architecture
of the visual cortex, as it is outlined in the next chapter.



Chapter 3

The visual cortex

3.1 Introduction

The objective of this chapter is to introduce the basic structures of the
functional architecture of the primary visual cortex (V1). The main idea is
that neural computations strictly depend on the organization and connectivity
of neurons in the cortex. We will consider here only the structures that
are relevant to the models presented in the later chapters, those involved
in the boundary coding. Receptive fields and receptive profiles of simple
cells will be introduced as basic elements for boundary coding. The three
fundamental structures implemented in the neural circuitry, namely the
layered, retinotopic and the hypercolumnar structure will be described from
the neurophysiological and functional point of view. Then the pinwheel
structure will be introduced as the real topological implementation of the
hypercolumnar structure. Finally the connectivity pattern between simple
cells will be considered. The functional and physiological descriptions are
only qualitative and almost every quantitative detail is deliberately avoided.
There are many sources in literature where the readers can find information
about this topic, starting from the very seminal but in-depth work of Hubel
and Wiesel [42, 43, 41] to the recent manuscript by Jean Petitot [74].

3.2 The cerebral cortex and the visual

pathway

The cerebral cortex is the outer sheet of neural tissue on the two cerebral
hemispheres, also called the “gray matter”. Most of the neurons associated

19
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with sensory or cognitive processing are located in the cortex. The rest of
the cerebral cortex mainly consists of axons connecting cortical neurons to
each other, it is called the “white matter”. The cortex is commonly described
as being constituted by three parts: sensory, motor, and association areas.
The sensorial areas are the parts of the cortex that receive sensory inputs.
The visual cortex is the area that serves the sense of vision and receives the
optical information from the visual path.

Figure 3.1: The visual pathway. The optical signal is converted into electrical
signals by photo-receptors. The electrical signal is transmitted into the brain
through the retino-geniculo-cortical pathway (image adapted from [35]).

Fig. 3.1 illustrates the visual pathway. Light enters the eye, reaching the
retina. The retina is a curved, thin sheet of brain tissue that grows out
into the eye to provide the starting point for the neural processing of visual
signals. The retina is covered by more than a hundred million photoreceptors,
which convert the light into electrical signals. From the photoreceptors, the
signal is transmitted through a couple of neural layers. The last of the retinal
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processing layers consist of ganglion cells, which send the output of the retina
(in form of action potentials) away from the eye using their very long axons.
The axons of the ganglion cells form the optic nerve. The optic nerve transmits
the visual signals to the lateral geniculate nucleus (LGN) of the thalamus,
a structure in the middle of the brain through which most sensory signals
pass on their way from the sensory organs to the main sensory processing
cortical areas. From the LGN, the signal goes to various destinations, the
most important being the visual cortex at the back of the head, where most
of the visual processing is performed.

In humans, the visual cortex contains approximately a fifth of the total cortex,
which reflects the importance of visual processing in us. It consists of a
number of distinct areas. The primary visual cortex (V1) is the area to which
most of the retinal output first arrives and is the most widely-studied visual
area.

3.3 Simple cells in V1

3.3.1 Receptive field and receptive profile

The receptive field of a visual neuron is the area of visual field in which visual
stimulation influences neural responses. Considering that the visual field is
reflected on the retina, it is often defined as the region of the retina where
the action of light alters the firing of the neuron. Some of these cortical
cells respond to light and dark spots in different sub-regions of the receptive
field (called ON and OFF zones respectively) and the arrangement of these
subregions can be used to predict the responses of the cell to visual stimuli.
Then, we are able to define the receptive profile (RP) of a neuron as its transfer
function if we think it as a filter. The RP is a function ϕ(x, y) measuring the
response of the cell (positive values for the ON zones and negative for the
OFF zones), ϕ : D → R, where the domain D is the receptive field, and (x, y)
are retinal coordinates.

3.3.2 The action of receptive profile on the stimulus

Visual neurons act on the visual stimulus in a very complex way including
non trivial temporal dynamics, non linear responses to light intensity and
contextual modulation accounting for non local behaviors. For our purpose
we will consider just the so called classical receptive field [17] acting on the
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stimulus with linear and local behavior as in the following. Let I(x, y) be
the optical signal defined on the retina (or equivalently the visual field) and
ϕ(x− x0, y − y0) be the RP of a neuron defined in a domain D centered on
(x0, y0). As we previously mentioned, the neuron acts on I as a filter, and it
computes the mean value of I on D weighted by ϕ:

Iϕ(x0, y0) =

∫
D

I(x′, y′)ϕ(x′ − x0, y
′ − y0)dx′dy′.

The response of the neuron Iϕ can be interpreted as a weighted measure at
the point (x0, y0) of the signal I. Therefore, if there is a set of neurons with
RP ϕ covering the whole retina, a convolution between the RP and the input
I is performed:

Iϕ(x, y) =

∫
D

I(x′, y′)ϕ(x′ − x, y′ − y)dx′dy′ = (I ∗ ϕ)(x, y).

3.3.3 Simple cells in V1 as orientation detectors

Using electrode recordings on cats visual cortex, Hubel and Wiesel in [42]
provided the first characterization of receptive fields in V1 based on their
responses. Reverse correlation techniques enabled the precise recording of
the RPs. In there, light and dark spots are presented at different positions
of the receptive field and their responses is measured (the firing rate of the
neuron). Afterwards, the correlation between the inputs and the outputs
yields the transfer function of the neurons. A review of reverse correlation
techniques can be found in [77]. Cells with separate subregions that respond
to either light or dark spots are called simple cells. All other cells in the
visual cortex that do not have separate ON/OFF zones (the majority of the
cells) are called complex cells [54].

Many researchers noted that the RPs of simple cells have a remarkable
resemblance to oriented partial derivatives of gaussians (DoG) up to a third
order (see for example [49]). Then, if:{

x̃ = x cos θ + y sin θ
ỹ = −x sin θ + y cos θ

(3.1)

where the angle θ ∈ S1 is the orientation of the symmetry axis of the filter,
an idealized model for odd-symmetric RP is (Fig. 3.2):

ϕ(x, y) =
∂3Gσ

∂ỹ3
(x, y) (3.2)
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and for an even-symmetric RP (Fig. 3.3):

ϕ(x, y) =
∂2Gσ

∂ỹ2
(x, y), (3.3)

where Gσ is the 2D gaussian kernel:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (3.4)

(a) (b) (c) (d)

Figure 3.2: The graph (a) and some level curves (b) of a third partial
derivative of gaussian (eq (3.2)). The graph (c) and some level curves (d) of
the imaginary part of a 2D Gabor filter (eq 3.5). Both are classical models of
simple odd-symmetric orientation cell.

(a) (b) (c) (d)

Figure 3.3: The graph (a) and some level curves (b) of a second partial
derivative of Gaussian (eq (8.9)). The graph (c) and some level curves (d)
of the real part of a 2D Gabor filter (eq 3.6). Both are classical models of
simple even-symmetric orientation cell.

Another classical model for the V1 RPs are the Gabor filters, proposed by
Daugman [16] or Jones and Plamer [45] amongst others. A Gabor filter is a
sinusoid modulated Gaussian:

Ψσ,ω,θ(x, y) = eiωỹGσ(x, y),
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where the imaginary part models an odd-symmetric RP (Fig. 3.2b):

ϕ(x, y) = Im(Ψσ,ω,θ) = sin(ωỹ)Gσ(x, y) (3.5)

and the real part an even one (Fig. 3.3b):

ϕ(x, y) = Real(Ψσ,ω,θ) = cos(ωỹ)Gσ(x, y). (3.6)

Qualitatively the two models are similar even if they have very different
properties from the theoretical point of view. In Daugman [16] the receptive
profiles of simple cells have been obtained as a minimum of the uncertainty
principle of the Heisenberg group, while in [83] they result as a minimum of the
uncertainty principle in the group invariant under rotations and translations.
Within this thesis the DoG model will be mostly used. In Fig. 3.4a there is
shown a RP of a V1 simple cell belonging to a cat (the image was taken from
[17]). In Fig. 3.4b one can see its fitting with a DoG filter of a third order
and in Fig. 3.4c with an odd Gabor kernel.

(a) (b) (c)

Figure 3.4: The receptive profile of a simple cell of V1. In red are visualized
the positive contrast areas (ON) while in green the negative (OFF). (a)
The level curves recorded in vivo with electrophysiological techniques and
reconstructed by reverse correlation, the size of the image corresponds to 5
degrees of the visual field (this image was taken from [17]). (b) Fitted with
a third derivative of Gaussian and (c) with the imaginary part of a Gabor
kernel.

Most of the V1 simple cells are functionally involved in visual processing
as orientation detectors. This means that at a certain scale, their response
is a measure of the local orientation of the stimulus at a certain retinal
point. The angle in which the response of the cell is maximal is called the
orientation preference (OP) of the neuron. A simple cell sensing a boundary
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fires maximally when the orientation of its axis is aligned with the boundary
itself. Nevertheless a broad set of cells with suboptimal orientation respond
to the stimulus. Then the cortex is equipped with a neural circuitry that is
able to sharpen orientation tuning. With this mechanism, called non-maximal
suppression, the output of the cells with suboptimal orientation is suppressed,
allowing just a small set of cells optimally oriented to code for boundary
orientation.

Θ

x

y

x
�

y
�

(a)

(b)

Figure 3.5: A set of simple cells schematically represented sensing of a
boundary. The output is maximum when the axis (red arrow) is tangent
to the boundary, but it is also not nulled for a broad set of sub-optimal
orientations.

3.4 The functional architecture of V1

We refer to the spatial organization and connectivity between neurons inside
a cortical area as the functional architecture. In the case of V1, three main
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structures were identified by neurophysiologists: the layered, the retinotopic
and the hypercolumnar structures.

3.4.1 The layered structure

The layered structure indicates that the cortex is formed by 6 horizontal
layers and a number of sublayers. The sublayer 4C is where most of the axons
from the LGN arrive and were the concentration of oriented cells is higher.

Figure 3.6: The layered structure of the primary visual cortex as steined and
photographed by Nissl (image taken from [41]). The picture reveals quite
clearly the different layers I to VI.

3.4.2 The retinotopic mapping

The retinotopy is a particular kind of topographic organization implying that
there exists a topology preserving mapping from the retina to the cortex.
The position of the center of the simple cell receptive fields form an ordered
sampling mosaic that covers a portion of the visual field. Because of this
orderly arrangement, which emerges from the spatial specificity of connections
between neurons in the retina and in the cortex, cells in each structure can
be seen as forming a map of the visual field (also called a retinotopic map, or
a visuotopic map). In other words, what is near in the retina is near in the
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cortex. Retinotopic maps are found in many mammalian brains. The specific
size, number, and spatial arrangement of these maps differ considerably
between species. From a quantitative point of view, a model for the mapping
well fitting the experimental data is based on a logarithmic conformal map
[1].

Figure 3.7: The retinotopic structure of the primary visual cortex recorded by
FMRI (image taken from [68]). The mapping is visualized on a reconstructed
anatomical volume. On the left the radial mapping is shown while on the
right the polar angle is visualized.

3.4.3 The hypercolumnar structure

Hubel and Wiesel discovered that while penetrating the cortex perpendicularly
and recording the RPs of the simple cells, their OPs remain constant, no
matter the depth. Not only the OP, but also the ocular dominance, the
direction of movement preference and other features are similar in each
column. This is why the cortex can be thought of as a 2D layer with respect
to orientation coding. A tangential penetration in the superficial layers of
the cortex reveals that the RPs of cells close to each other strongly overlap
while the OP varies smoothly1 generating the orientation hypercolumnar
structure. Fig 3.8 shows the classical cube model of Hubel an Wiesel [43]
that summarizes the experimental results.

1the only exceptions are singular points where cells around them are arranged radially
varying their preferred angle, the so called pinwheels.
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Figure 3.8: A simplified version of the classical Hubel and Wiesel cube
scheme of the primary visual cortex (cytochrome-oxidase blobs are not shown).
Cells belonging to the same column share similar RP characteristics (almost
identical receptive fields, same OP and ocular dominance). The orientation
hypercolumns are arranged tangentially to the cortical sheet. Moving across
the cortex the OP varies while the RP strongly overlap. Oriented bars colored
with a polar color codes are used to represent the OPs (the hue represent the
angle).

The cortical structure is largely redundant. It means that at a certain scale
and resolution, for each point of the retina (x, y) there exists a whole set
of neurons in V1 responding maximally to every possible local orientation
θ. Since ideally the position on the retina takes values in the plane R2 and
the orientation preference in the circle S1, the visual cortex domain can be
locally modelled as the product space R2×S1. Each point (x, y, θ) of this
3D space, represents a column of cells in the cortex associated to a retinal
position (x, y), all of which are tuned to the orientation given by the angle θ.

Fig 3.9 shows a schematic representation of the visual cortex. The hyper-
columns are draw vertically. The different colors represent different orienta-
tions. The coordinates (x, y, θ) of this 3D space isomorphic to R2×S1 are the
parameters of the RPs: (x, y) is the retinotopic position and θ the tuning
angle.

The fundamental consideration here is that V1 is modelled as the 3D space of
positions and orientations, while as mentioned earlier the cortex is essentially
a 2D layer. Therefore, a dimensional reduction problem must be faced. The
strong redundancy of the cortex (receptive fields of close neurons highly
overlap) allows for the codifying 3D information in a 2D structure. The visual
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system has implemented the dimensional collapse in the pinwheel structure
described bellow.

x

y

Θ

Figure 3.9: The visual cortex modelled as a set of hypercolumns. Over each
retinotopic point (x, y) there is a set of cells coding for the set of orientations
{θ ∈ S1} and generating the 3D space R2×S1. Each bar represents a possible
orientation. The color coded map is the same one used in Fig. 3.8.

3.4.4 The pinwheel structure

3.4.4.1 The experiment of Bonhöffer and Grinvald

As we have seen, neurons lying below each other in the visual cortex share
the same orientation tuning among other functional properties. Across the
cortical surface, the OPs change gradually forming an orientation map. In
order to determine the precise layout of the iso-orientation domains of the
cortex, the in-vivo intrinsic-signal optical imaging techniques were developed
in the early nineties by Bonhöffer and Grinvald [9]. This brain imaging
technique introduced a real revolutionary progress within the study of the
cortical organization and function. It allowed for the acquisition of activity
images for the population of cells from the superficial layers of V1 revealing
the global map of orientations. Previously the only acquisition techniques
were the recordings of a few individual neurons using micro-electrodes or the
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2-deoxyglucose method which permits post-mortem visualization of brain
activity areas. A very illustrative analogy with events that occurred within
meteorology was produced by Petitot in [74]. Passing from the recording of
individual cells to the activity of a cortical area can be compared to changing
from sending balloons to the use of satellite images.

Figure 3.10: Optical imaging (image taken from [59]). Images are taken from
the exposed cortex of the animal, which is illuminated with an infrared light
(605 nm). The images are acquired with a video camera while the animal
is visually stimulated with moving gratings projected onto a screen. The
signal to noise ratio of the functional maps is improved by averaging several
stimulus sessions.

The experiment of Bonhöffer and Grinvald is described as follows (a detailed
technical description of the method can be found in [34]). High contrast
oriented and moving gratings consisting of square wave images with constant
frequency at a given angle (translating in both directions along the wave
vector) are presented to an animal as a visual stimulus. A hole in the crane
above its primary visual cortex is opened and the window is illuminated
with an infrared light. Small but different absorptions of light patterns are
observed depending on the grating’s orientations and are registered with an
optical video camera. The intensity of the images recorded depends on the
neural activity of the neuron population under each point. The images may
be improved therefore averaging an increased realization of the experiment. A
simple post processing of these images is made by taking the difference between
patterns corresponding to orthogonal gratings, cutting the low frequencies
and normalizing. Thus, precise iso-orientation maps, i.e. the areas that best
respond to one orientation, are obtained. Fig. 3.11 from [15] shows the
patterns obtained in a real experiment for eight different orientations. The
areas in dark forming the round patches correspond to regions where the
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Figure 3.11: Orientation preference maps (image taken from [15]). The gray
level images show the cortical responses to stimulation at the orientation
indicated by the colored bars. Dark regions correspond to strong neuronal
response. The central panel is obtained combining all the eight images; the
color indicates the preferred orientation.

response to the stimulus is maximal. In the corner of each image, an oriented
colored bar indicates the orientation of the grating.

All the orientation maps can be combined using a color scale (the central
image in Fig. 3.11). Each color corresponds to the best orientation stimulus.
In Fig. 3.12 the orientation maps of a significant portion of a tree shrew’s
V1 is shown (from [11]). In the figure one is able to identify 2 emerging
structures:

• regular zones where the color changes gradually and obviously corre-
spond to the orientation hypercolumns recorded with the electrodes.

• singular points where all colors appear once and only once around them.
These points arranged like spokes of a wheel are called pinwheels. All
the orientations are present radially varying near the center in both
clockwise and counter-clockwise form.

The orientations recorded belong to the interval [0, π), seeing as the technique
does not permit for the distinction of cells with opposite contrasts (this
becomes clear just by looking at the set of possible stimulus). This implies
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Figure 3.12: Orientation preference maps of tree shrew’s visual cortex (image
taken from [11]). Orientation preference of each location is color-coded as
usual. Portions of the orientation preference map shown on the left are
enlarged to demonstrate that the orientation preference maps contained both
linear zones and pinwheel arrangements.

that points opposed with respect to the pinwheel’s center have perpendicular
orientations.

3.4.4.2 The structure of pinwheels at a fine scale

Conventional optical imaging has a lateral spatial resolution of 50 µm at best,
and a very limited depth resolution, so it is not capable of resolving the fine
scale structure of the pinwheel centers. Below this spatial scale, conventional
optical imaging is not able to decide whether neurons selective for different
orientations were arranged randomly near the pinwheel center or might be
perfectly segregated. Therefore the question of whether the pinwheels really
exists at a neuronal scale or whether they were a consequence of the acquisition
technique remained open for many years. The two-photon calcium imaging
technique based on confocal microscopy allowed Ohki et Al [66] to analyze the
functional maps at single-cell resolution in three dimensions. Firstly, preferred
orientation maps of a cat’s visual cortex were recorded with intrinsic-signal
optical imaging in order to target the injection of a calcium indicator dye to
a pinwheel center. This injection typically labelled thousands of neurons near
the pinwheel. The confocal imaging allowed for the simultaneous measurement
of the visual responses of tens to hundreds of labelled neurons within a given
optical cross-section parallel to the cortical surface. This measurements were
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Figure 3.13: Pinwheels in 3D at a fine-scale (image taken from [66]). (a)
An orientation map obtained with the classical optical signal. As usual hue
corresponds to the best orientation. Darker colors in the pinwheel centers
represent less selective responses. b) Two-photon calcium imaging. The
square region is about 250µm deep. The four bottom panels show the maps
relative to the orientations indicated. The upper panel is the average image.
(c) Cell-based orientation maps from nine different depths indicated in µm.
The last panel shows the overlay of images from all nine depths.
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repeated at different depths. The results obtained are presented in Fig. 3.13.

This experiment definitively confirmed that pinwheels exist as a real neuro-
physiological structure.

3.4.5 The pattern of lateral connectivity

In previous sections we have seen how the visual system breaks up the visual
signal and represents it in arrays of neurons, each one coding an individual
component of the image. An interesting question is how these neurons
communicate to each other.

To this aim, a fundamental neurophysiological finding was the discovery
of the lateral connectivity in the cortex, also called horizontal or intrinsic
connectivity. These experiments (see for example [11, 33]) revealed the
existence of connections parallel to the cortical surface that run several
millimeters (6 to 8 mm in the visual cortex). These long range connections
allow for communication between cells of similar OP belonging to different
hypercolumns with non overlapping receptive fields. The linked cells not only
share the angle of tuning, but also the axis corresponding to the orientation
is roughly the same. The experiment performed by D. Fitzpatrick and his
collaborators provided a particularly illustrative result (see Fig 3.14). They
injected a chemical tracer into a small area of the visual cortex of a tree
shrew. The tracer was propagated through the lateral connections and the
resulting image was combined with the orientation maps obtained with optical
imaging. It can be observed that in the immediate vicinity of each neuron,
the connections are relatively isotropic, but over larger distances they closely
follow the OPs.
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Figure 3.14: Long range connections (image taken from [11]). The white dots
indicate where the chemical tracer (biocytin) has been injected. The tracer is
propagated through the lateral connections to points shaded in black. These
locations are plotted together with the orientation map.
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Chapter 4

A cortical model in SE(2)

4.1 Introduction

This section is devoted to mathematically modelling the cortical space intro-
duced in the previous section. We are mainly interested in the structure of
the cortex, which is responsible for the functionality of the cortex itself.

We start by reviewing the definition and some basic properties of the Lie
group theory, which take into account the symmetry of the cortex. Then, we
recall that the hypercolumnar structure of the primary visual cortex has been
modelled as a fiber bundle in a seminal paper [39] by W. Hoffman, developed
by J. Petitot and Y. Tondout in [75, 73] as a jet bundle (with the Heisenberg
symmetries) and by G. Citti and A. Sarti [82, 14] as the principle fiber bundle
of the Lie group SE(2). In this Chapter the last model is presented.

Each hypercolumn of simple cells, defined at a retinal point (x, y), forms a
mono-dimensional group of rotations. This structure is identically repeated
for every point of the retina, and can therefore be considered as a fiber of the 3-
dimensional principal bundle. This bundle can be identified with a cotangent
bundle, as its elements are orientation detectors. In this description the
neural process of maxima selection due to intra-cortical short range inhibitory
connections lifts boundaries or curves present on the retinal plane to curves in
V1, and whole retinal images to surfaces in V1. Then a differential structure
is introduced into this group, in order to model the long range horizontal
connections between different hypercolumns. This structure is formalized as
the Lie algebra with a sub-Riemannian structure (see [82, 14]). The integral
curves of its generating vector fields will be interpreted as a mathematical
representation of the long range connection (see 3.4.5 in the previous section)

37
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and their 2D retinal projection will model the association fields of Field,
Hayes and Hess (see [29]).

4.2 The notion of Lie Group and Tangent

Space

In this section we provide some basic definitions of the Lie group theory, as it
is the essential framework utilized in this thesis. All definitions can be found
in standard mathematical textbooks (for example [69]). A very accessible
version for non mathematicians can be found in J. Koenderink’s book [50].

Definition 1. An internal operation · on a set G is a function which associates
to each couple of elements (a, b) of G another element denoted as a · b of G.
This condition is also called Closure: for all a, b ∈ G, a · b ∈ G. To qualify
the set G as a group, the operation must satisfy three requirements known
as the group axioms:

• Associativity. For all a, b, c ∈ G, (a · b) · c = a · (b · c).

• Identity element. There exists an element e ∈ G, such that for all
a ∈ G, e · a = a · e = a.

• Inverse element. For all a ∈ G, there exists an element a−1 ∈ G
such that a · a−1 = a−1 · a = e, where e is the identity element.

Groups fulfilling the property of commutativity: for all a, b ∈ G, a · b = b · a,
are called Abelian or commutative.

A subgroup is a subset G′ of G satisfying the group axioms.

The distinguishing feature of a Lie group is that it also carries the structure
of a smooth manifold, so that the group operation is continuous.

Definition 2. A Lie group is a group which also carries the structure of a
manifold in such a way that both the group operation

m : G×G→ G, m(g, h) = g · h, g, h ∈ G,

and the inversion
i : G→ G, i(g) = g−1, g ∈ G,

are smooth maps between manifolds.
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Examples of Lie Groups are :

• the Euclidean space Rn, with the usual sum as group law;

• the set of square matrices n× n, with determinant different from 0. In
this set we consider the standard product of matrices, and the existence
of inverse is ensured by the condition on the determinant. Note that
this group is not commutative;

• the circle S1 of angles mod 2π, with the standard sum of angles;

• the group of rotations and translations on the plane to be described in
detail in the following section.

Definition 3. Let C be a smooth curve on a manifold M, parameterized
by γ : I → M, where I is a subinterval of R. In local coordinates x =
(x1, . . . , xn), C is given by n smooth functions γ(s) = (γ1(s), . . . , γn(s)) of
the real variable s. At each point x = γ(s) of C, the curve has a tangent
vector

X|x = γ̇(s) = γ̇1(s)
∂

∂x1
+ · · ·+ γ̇n(s)

∂

∂xn
.

By this definition it becomes clear that tangent vectors can be identified with
directional derivatives in the direction:

~X|x = (γ̇1, . . . , γ̇n)

if applied to smooth functions f :M→ R. In particular

Xf =< ~X,∇f > .

Within this thesis we will identify differential operators and vectors, hence
use indifferently the two notations.

Definition 4. The collection of all possible tangent vectors to all possible
tangent curves passing through a point x ∈M is called the tangent space
to M at x, and is denoted as TM|x.

Definition 5. An integral curve of a vector field ~X is a smooth parametrized
curve x = γ(s) whose tangent vector at any point coincides with the value of
~X at the same points for all s:

γ̇(s) = ~X|γ(s).
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An integral curve is called maximal integral curve if it is not contained in
a longer integral curve.

Definition 6. For two differential operators X and Y, their Lie bracket
(or commutator) is defined by their actions on functions f :M→ R:

[X,Y]f = X(Yf)−Y(Xf).

Note that the Lie Bracket is a measurement of the non-commutativity of the
operators: it is defined as the difference of applying them in reverse order. In
particular [X, Y ] is identically 0 if X and Y commute.

If X and Y are first order operators:

X = a1∂x1 + · · ·+ an∂xn
Y = b1∂x1 + · · ·+ bn∂xn

a simple computation ensures that:

[X,Y]f = (Xb1∂x1 + · · ·+ Xbn∂xn −Ya1∂x1 − · · · −Yan∂xn) f

is a first derivative.

Definition 7. Let G be a Lie group. For any element g ∈ G, we define the
left-multiplication (or left-translation) Lg : G→ G by:

Lg(h) = g · h, for all h ∈ G,

where · denotes the group operation in G.

Definition 8. An operator X on G is called left-invariant if:

X(foLg) = (Xf)oLg, for all g ∈ G.

Definition 9. The Lie algebra of a Lie group G is the vector space of all
left-invariant vector fields on G.

Intuitively the Lie algebra associated to a Lie group encodes its differential
structure, and it is identified as the tangent space at the origin.
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4.3 The visual cortex is a fiber bundle

As proposed by Hofmann [39], the mathematical structure ideally modelling
the retinotopic and hypercolumnar structure is called the fiber bundle or
fibration.

In the simplest case1 a fiber bundle is defined by two differentiable manifolds
B, called the base manifold of the fiber bundle and F , called the fiber of
the bundle. In this simplest case, the total space of the fiber bundle will be
identified by B × F . In addition, within the fiber bundle there is also defined
a natural projection

π : B × F → B.

In [75, 73], Petitot and Tondut reconsidered the fiber bundle structure and
proposed a cortical model based on jet-bundles. The bundle is associated to
the 1-form:

−pdx+ dy,

where p ∈ R is the angular coefficient of the tangent to the boundaries.
This theory leads to Lie symmetries of a Heisenberg group. In this formal
framework the so called base space of the fibration is the retina and there is
a map associating it to each retinotopic position (x, y) ∈ R2 a fiber which is
a copy of the whole possible set of angular coefficients in the plane {p ∈ R}.

In [82, 14], Citti and Sarti proposed a model of the principle fiber bundle of
the SE(2) group. In this context the 1-form characterizing the bundle can
be expressed as:

− sin θdx+ cos θdy

This bundle became the standard method for describing the cortical space
also used in the book of J. Petitot [74].

1A fiber bundle is defined by two differentiable manifolds M and C, a group G, and
a projection π. C and M are called, respectively, base space and total space. The total
space is locally described as a cartesian product C = M×G, meaning that to every point
m ∈ M is associated a whole copy of the group G, called the fiber. The function π is a
surjective differential map, which locally acts as:

π : M×G→M, π(m, g) = m,

where g is an element of G. In the model presented here, the base space is implemented
in the retinal space and the total space in the cortical space. Particularly the group G of
rotations to the point m = (x, y) is implemented in an hypercolumn over the same point.
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Fig 3.9 can be now interpreted as a schematic representation of the visual
cortex rearranged as a fiber bundle. The hypercolumns are draw vertically
and are called fibers. The different colors represent different orientations.

4.3.1 The cotangent bundle

As mentioned before, the functionality of the odd receptive fields has been
interpreted as gradient indicators and two similar models were described:
the derivative of Gaussian and the Gabor filters. Let us choose the Gabor
model for the following deductions (for the case of DoG computations are
straightforward). The imaginary part of a Gabor filter with orientation θ has
the expression:

ϕ(x, y) =
1

2πσ2
sin(kỹ)e−

x̃2+ỹ2

σ2

where {
x̃ = x cos θ + y sin θ
ỹ = −x sin θ + y cos θ

.

The map (x, y)→ (x̃, ỹ) is a rotation of angle θ. Then, the function ϕ can be
approximated (up to a multiplicative constant) by

2 sin(kỹ)

kσ2
e−

x̃2+ỹ2

σ2 ' 2ỹ

σ2
e−

x̃2+ỹ2

σ2 = ∂ỹe
− x̃

2+ỹ2

σ2 .

A derivative in the direction ỹ can be expressed in the original variables (x, y, θ)
as a directional derivative in the direction of the vector (− sin θ, cos θ):

∂ỹI = − sin θ∂xI + cos θ∂yI =< (− sin θ, cos θ),∇I >

This derivative applied to a function I expresses the projection of the gradient
in the direction (− sin θ, cos θ). Since the gradient is an element of the tangent
plane, the vector (− sin θ, cos θ), which acts on it will be considered as an
element of the cotangent plane, and represented as 1- form

− sin θdx+ cos θdy. (4.1)

The quantity < (− sin θ, cos θ),∇I > will be a maximum when (− sin θ, cos θ)
is parallel to ∇I or equivalently when it is perpendicular to a level line of the
image I (see Fig. 4.3). Therefore, a simple cell with receptive field centered
at the point (x, y) can be identified with a 1-form which selects the direction
θ of a boundary at this point.
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4.4 The visual cortex as the SE(2) group

The Rototranslation group is the fundamental mathematical structure used
in this thesis. In the literature it is also known as the 2D Eculidean motion
group SE(2). It is the 3D group of rigid motions in the plane or equivalently
the group of elements invariant to rotations and translations. The aim of
this section is to show that the visual cortex at a certain level is naturally
modelled as the Rototranslation group with a sub-Riemannian metric.

4.4.1 The group law

In the previous section we have described the functional architecture of the
visual cortex and in particular we have seen how the fibration resulting from
the vector product R2×S1 is the space of parameters of simple V1 cells.
The parametrization is given by their retinotopic position (x1, y1) and their
orientation preference θ. Another way of thinking with regards to this space
is illustrated in Fig. 4.1. The half-white/half-black circles represent oriented
receptive profiles of odd simple cells, where the angle of the axis is the angle
of tuning. Every possible receptive profile is obtained from a mother kernel
by translating it of the vector (x1, y1) and rotating over itself by an angle θ.

We denote Tx1,y1 the translation of the vector (x1, y1) and Rθ a rotation matrix
of angle θ:

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Then a general element of the SE(2) group is of the form Ax1,y1,θ = Tx1,y1 ◦Rθ,
and applied to a point (x, y) it yields:

Ax1,y1,θ1

(
x

y

)
=

(
x

y

)
+ Rθ1

(
x1

y1

)
All the profiles can be interpreted as: ϕ(x1, y1, θ1) = ϕ0 ◦ Ax1,y1,θ1 The set of
parameters g1 = (x1, y1, θ1) form a group with the operation induced by the
composition Ax1,y1,θ1 ◦ Ax2,y2,θ2 . This turns out to be:

g1 · g2 = (x1, y1, θ1) +R (x2, y2, θ2) =

(((
x1

y1

)
+ Rθ1

(
x2

y2

))T
, θ1 + θ2

)
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x

y
Θ

Figure 4.1: The visual cortex modelled as the group invariant under transla-
tions and rotations.

Being induced by the composition law, one can easily check that +R verifies
the group operation axioms, where the inverse of a point g1 = (x1, y1, θ) is
induced by the rototranslation:

A−1
x1,y1,θ

= R−1
θ ◦ T

−1
x1,y1

,

and the identity element is given by the trivial point e = (0, 0, 0). Then,
the group generated by the operation +R in the space R2×S1 is called the
Rototranslation group or equivalently SE(2).

A structured space with the symmetries described above allows for the cortex
to be invariant to rotations and translations in the representation of a retinal
image: the signals will be identical no matter what their position or orientation
in the phenomenological space is.

4.4.2 The differential structure: horizontal plane and
lifting

What distinguish a Lie group from a topological group is the existence of
a differential structure. In the case of V1, Citti and Sarti in [14] proposed
to endow the R2×S1 with a sub-Riemannian structure. In the standard
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Euclidean setting, the tangent space to R2×S1 has dimension 3. They
selected a bi-dimensional subset of the tangent space at each point, called
the horizontal plane, as a model of the connectivity in V1. In the sequel we
describe how to define the horizontal plane.

4.4.2.1 Horizontal plane

In the previous section we identify each Gabor filter with an 1-form (see 4.1)
on the R2 plane. This form can be lifted to the cotangent space of R2×S1

into the 1-form:

− sin θdx+ cos θdy.

The horizontal tangent space will be identified by the kernel of this form, or
in other words by the set of vectors orthogonal to the vector that we will
denote ~X3:

~X3 = (− sin θ, cos θ, 0).

Its kernel is a bi-dimensional plane (see Fig. 4.2) called the horizontal plane
and is generated by the first order operators X1 and X2:

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ.

The choice of these 2 vectors from the whole kernel as generators of the
horizontal plane will become clear in the next subsection. Indeed the tangent
plane is by definition the plane of the vector fields tangent to the curves of
the space. We will see that the only curves of the space are integral curves of
the two vector fields X1 and X2, while there is no natural curve with a non
vanishing component in the direction X3. Then this has not to be considered
a tangent direction.
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Figure 4.2: A schematic representation of a simple cell of V1 where the vectors
~Xi are indicated.
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4.4.2.2 Lifting of curves

Hx,yL

Hcos Θ,sin ΘL

Θ

ÑI=HIx,IyL

x

y

Figure 4.3: A contour in a 2D image can be modelled as a curve whose tangent
is the vector (cos θ, sin θ) as indicated in the figure.

A contour may be represented in the 2D plane as a regular curve

γ2D(t) = (x(t), y(t)),

and we can assume that its tangent vector is non vanishing almost everywhere,
so that it can be identified by an orientation θ(t) : D ⊂ R→ S1. This indicates
that we are able to parametrize the curve by its arc-length

(ẋ(t), ẏ(t)) = (cos(θ(t)), sin(θ(t))). (4.2)

The function θ takes values on the whole circle, in order to represent polarity
of the contours: two contours with the same orientation but with opposite
contrasts are represented by opposite angles on the unit circle. The action of
the receptive profiles is to associate to every point (x(t), y(t)) the orientation
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θ(t). In this way the two dimensional curve γ2D is lifted to a new curve γ(t)
in the 3D space:

(x(t), y(t))→ (x(t), y(t), θ(t)). (4.3)

We will call admissible curve a curve in R2 × S1 if it is the lifting of an edge
(identified with a planar curve).

Figure 4.4: A contour represented by the blue curve γ2D(t) is lifted into the
rototranslation group obtaining the red curve γ(t). The tangent space of the

rototranslation group is the span of the vectors ~X1 and ~X2.

In Fig.4.4 we illustrate the lifting process. By the parametrization we have
chosen in formula (4.2) for the curve γ2D (the blue curve in Fig. 4.4) we can
immediately express the value of θ:

θ = arctan

(
ẏ

ẋ

)
. (4.4)

The lifting γ of the curve γ2D is defined in (4.3), and depicted in Fig. 4.4
(the red curve). By definition it can be expressed by (x, y, θ), where

γ̇(t) = (ẋ(t), ẏ(t), θ̇(t)) = (cos(θ(t)), sin(θ(t)), θ̇(t)) = ~X1(t) + θ̇(t) ~X2(t).
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It follows immediately that γ̇(t) has a non vanishing component in the

direction ~X1 and a second component θ′ in the direction of ~X2. In particular
admissible curves are integral curves of two vector fields in a 3D space, and
cannot have components in the orthogonal direction ~X3.

x

y

Θ

Figure 4.5: The horizontal tangent planes in each point of the rototranslation
group determine the differential structure of the space.

As seen in the previous section, the horizontal plane is the span of the vectors
~X1, ~X2. An admissible curve in this group is an integral curve of the vector

field ~X1, ~X2 and is defined as the solution for the following ordinary differential
equation:

γ̇(t) = ~X1(t) + k(t) ~X2(t). (4.5)

Writing the same equation componentwise we get:
ẋ = cos θ
ẏ = sin θ

θ̇ = k(t).
(4.6)

It is well known that k(t) is the curvature of γ2D(t). Writing the curve this
way it become obvious that the shape of the curve is completely defined by
the function k: its curvature or angular velocity.
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4.4.3 The sub-Riemannian metric

4.4.3.1 The Lie algebra

We explicitly note that the vector fields ~X1, ~X2 and ~X3 are left invariant with
respect to the group law of rotations and translations, so that they are the
generators of the associated Lie algebra.

In the standard Euclidean setting, the tangent space to R2×S1 has dimension
three at each point. Here, only a two dimensional section of the tangent space
is selected, the horizontal tangent space, generated by the vector fields ~X1

and ~X2.

4.4.3.2 The choice of the metric

Recall that a metric is simply the choice of the length of any vector of
the tangent space; hence once our tangent space has been defined, we can
immediately perform a choice of the metric. We will call the norm of the
vector α1

~X1 + α2
~X2

||α1
~X1 + α2

~X2|| =
√
α2

1 + α2
2.

The metric induced by this choice is clearly Non-Euclidean, moreover it is not
even Riemannian at any point, considering we do not prescribe the length of
the vector X3. A Reimannian approximation would be

||α1
~X1 + α2

~X2 + εα3
~X3|| =

√
α2

1 + α2
2 + εα2

3

and it is clear that we recover that previous, as ε goes to 0. This Riemannian
metric can be represented as

diag(1, 1, 1/ε)

in the basis { ~X1, ~X2, ~X3}, and its co-metric in the same basis is:

diag(1, 1, ε).

Hence we can define a co-metric for the limit sub-Riemannian metric as

diag(1, 1, 0),
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with respect to the same basis. Hence the space co-metric in the canonic
basis will therefore become:

(
gij
)

=

 cos θ 0
sin θ 0

0 1

( cos θ sin θ 0
0 0 1

)
=

 cos2 θ cos θ sin θ 0
cos θ sin θ sin2 θ 0

0 0 1

 .

Given that the matrix gij is not invertible, it can not induce a Riemannian
metric in the space. Spaces equipped with Sub-Riemannian metrics appear
often when one of the dimensions is a state variable depending on the others.
In this instance the state variable is θ.

4.4.4 Connectivity property and distance

Once equipped the tangent planes with an Euclidean metric, the length of
an admissible curve (represented as in equation (4.6)) can be computed by
integrating the tangent vector, as usual:

λ(γ)(t) =

∫ t

0

‖γ′(s)‖ds =

∫ t

0

√
1 + k2ds. (4.7)

Figure 4.6: The figure shows a trivial way to reach any point of the SE(2)
moving along the integral curves of vectors belonging to the horizontal plane.

In order to define a distance in terms of the length, we need to answer the
following question: Is it possible to connect each couple of points of R2×S1

using an admissible curve?
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This is not a simple question taking into account that at each point we have
only the directions which are linear combinations of two vectors even if we
are immersed in a three dimensional space. However, the answer is yes and it
will become clear in the example shown in Fig 4.6. It is shown how trivial
it is to arrive from an arbitrary point to another by just using admissible
curves curves. For simplicity let us put the starting point at the origin (0, 0, 0)

and the end point (x, y, θ). We can move first in the direction of ~X2 until

we arrive at (0, 0, α) with α = arctan(x/y), so the vector ~X1 points to the
fiber over the point (x, y). Once we arrive to the fiber we are at the point

(x, y, α) and we can move again in the direction of ~X2 until we get to the
point (x, y, θ).

The possibility of connecting each couple of points with an admissible curve,
is called the connectivity condition. We have directly proved this condition,
but we can deduce it from some general results strictly related to the non
commutativity of vector fields. Indeed there is a differential relationship
between X1, X2, and the vector field X3, and this can be obtained as a
commutator of the previous two:

X3 = [X1, X2] = − sin θ∂x + cos θ∂y.

This is a particular case of the well known Hörmander condition:

Definition 10. We say that the Hörmander condition is satisfied if X1, X2

and their commutators of any order span the Euclidean tangent space at every
given point.

In the present case this condition is clearly satisfied, if X1, X2 and X3 =
[X1, X2] are linearly independent and span the tangent space to R2×S1 at
each point. Hence we can apply the Chow theorem, which ensures that if the
Hörmander condition is satisfied, then the connectivity condition also holds
(see [14] and the references therein).

This is exactly what we already see: any couple of points can be joined with
an admissible curve, an integral curve of X1 or X2.

Consequently, it is possible to define a notion of distance between two points
p0 = (x0, y0, θ0) and p1 = (x1, y1, θ1):

d(p0, p1) = inf{λ(γ) : γ is an admissible curve connecting p0 and p1}. (4.8)

In the Euclidean case this infimum is realized by a geodesic that is a segment.
Here, the geodesics are locally curvilinear. The functional in (4.7) has the
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same asymptotic behavior as the modified Elastica functional introduced by
Nitzberg, Mumford and Shiota in [65]:

φ(k) =

{
ν + αk2 for |k| < β/α
ν + β|k| for |k| ≥ β/α

where α and β are two scalar weights. The above functional is quadratic when
the curvature tends to zero and linear when it tends to infinity. The same
functional is used in perceptual completion problems to complete occluded
parts, to perform image inpainting or to retrieve subjective contours [14,
64, 55, 5, 84]. The minimizer of the functional allows for the kinks in the
asymptotic behavior.

4.4.5 Integral curves and horizontal connections

The expression of the integral curves of the structure was given in by eq.
(4.6). Choosing the curvature k constant over time, one can integrate the
system of equations to obtain an explicit formula for the curve γ(t) starting
from the origin (x0, y0, θ0) = (0, 0, 0):

x = sin(kt)
k

y = 1−cos(kt)
k

θ = kt

. (4.9)

For each value of the parameter k a different curve with helicoidal path is
obtained, since the projection over the plane is a circle with curvature k and
it moves with constant speed in direction θ. On Fig.4.7 some integral curves
in the 3D space of positions and orientations R2×S1 for different values of k
are shown. The projection on the space R2 is visualized in Fig.4.8.

It is clear that this projection is in good agreement with the association
fields of Fields, Hayes and Hess [29], as well as with the pattern of lateral
connectivity discovered by D. Fitzpatrick and his collaborators (see Section
3.4.5).
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Figure 4.7: The fan of integral curves given by eq. (4.9) by varying the
curvature k, visualized in the R2×S1 space. The set of curves defines a surface
with a singular point at the origin.

Figure 4.8: The projection of the integral curves with constant coefficients
defined by eq. 4.9 modelling the association fields [29].
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Figure 4.9: In each point of the cortical inspired space, the horizontal connec-
tivity is locally modelled by the fan of integral curves.

4.5 Discussion

The SE(2) model of the cortex presented in this Chapter is 3D and continuous.
Therefore, this model does not take into account the fact that the cortex is
basically a 2D sheet formed by a discrete number of singular points, named
pinwheels, which are surrounded by large areas which are only sensitive to
roughly one orientation, as shown in the optical images of the previous chapter.
A possible answer to this incongruence is well described in Chapter 4, Section
4.7 of the book of J. Petitot [74]. It essentially shows that, when considering
the limit case in which the density of the pinwheels tends to infinity, each
point becomes a pinwheel which may be interpreted as a fiber (a point where
all orientations are present once). Then, the cortex becomes a full 3D space
isomorphic to R2×S1.

However it can be interesting to recall that the original fibration model intro-
duced first by Hoffman does not take into account the existence of pinwheels.
In facts it preceded the discovery of the pinwheels. The fundamental as-
sumption was based on the strong redundancy present in the cortex when it
codifies retinal positions and orientations. As already outlined by Hubel and
Wiesel, there is a whole orientation hypercolumn of simple cells associated
to each retinotopic position. Within the cells of each hypercolumn, their
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receptive profiles are centered at the same retinal point even though the cells
are arranged horizontally along the cortical sheet. When discretizing the 3D
continuous space and collapsing it to 2D, the pinwheels should appear as a
consequence of the fact that the orientation variable is periodic. This last
point is just an hypothesis to be proved and even if it is a beautiful problem,
it is beyond the scope of this thesis.

A novelty introduced by Citti and Sarti is the use of the sub-Riemannian
metric and in my opinion is among the strengths of the framework. This kind
of metrics often appear when one of the variables considered is a state variable
(θ = θ(ẋ, ẏ) as stated in eq. 4.4). We have shown that the sub-Riemannian
metric may be interpreted as a degenerated Riemannian metric where one of
the components is forbidden.

Probably the main strength is the methodology presented in order to construct
the cortical space. The same procedure followed in this chapter may be
extended in order to consider other features encoded within the cortical
architecture. One example of this extension, described in this thesis in
Chapter 8, is based on [84] where the scale is taken into account.

In this chapter the model for the lateral connectivity is the fan of integral
curves with constant coefficients (the helicoidal curves shown in Fig. 4.7).
This pattern tell us how points belonging to different fibers (cells from different
hypercolumns) are connected. The reader may observe how more structure
was add progressively to the group. First, each point was identified with the
parameters of simple cells (Fig. 4.1). The simple cells where then modelled as
one-forms in the direction of X3 which naturally define the horizontal tangent
planes (Fig. 4.5). Finally long range connectivity was included (Fig. 4.9).
The projection of the fan of integral curves on the retinal plane (Fig. 4.8)
was proposed in [14] as a model of Field, Hayes and Hess association fields.
We also described the relation between the cortical model and the elastica
functional.



Chapter 5

Image completion in SE(2)

5.1 Introduction

Chapter 5 presents an implementation of the perceptual completion model
proposed by Citti and Sarti in [14]. This work is reported in [79, 80]. In the
Citti and Sarti model, an image is lifted onto a surface in the SE(2) space.
The completion was achieved by means of a propagation process modelled as
a two step algorithm inspired by neural architectures. In the original work it
was proved that the algorithm converges to a diffusion driven mean curvature
flow in the sub-Riemannian settings so the mean curvature flow was proposed
in order to provide completion. As a result of the curvature flow a minimal
surface in the sub-Riemannian metric is achieved.

In this chapter we directly implement the two step algorithm of diffusion-
concentration. The diffusion process, modelling cortical propagation, is
restricted to the sub-Riemannian differential structure. The implementation
of the completion algorithm is the first original contribution of this thesis.

As we will show, the minimal surfaces of the sub-Riemannian structure are
ruled in geodesics which coincide with Mumford’s elastica. Therefore we start
the chapter reviewing existing PDE models for image completion inspired
by this classical functional. We then begin with the model of completion,
adapting that of Citti and Sarti. In Section 5.3 existing boundaries and level
lines are lifted to the 3D space directly using differential instruments. All
surfaces, also in absence of holes in the original image, have to be completed
due to the possible amodal completion.

In Section 5.4 we describe the implementation of the two step diffusion-
concentration algorithm. We study in depth the concentration step, and
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introduce a renormalization technique to implement the multiple concentration
feature which allows to handle occluded and occluding objects at the same
time. In Section 5.5 we present the proposed numerical scheme, and in Section
5.6 we apply the algorithm to relevant cognitive cases and show some results.

5.2 Related work

Many computer vision techniques have been proposed to model perceptual
completion, either heuristically based or biologically inspired. Here we review
the PDE based models more directly related to the well known Elastica
functional, and refer to the next chapter for probabilistic models of completion.

A modification of the Mumford-Shah functional, with the Elastica term, was
first presented in [65]. Then, the Elastica functional had been extended to a
completion of level lines in a missing region of an image in [55, 2]. However
the Elastica term is of second order, leading to 4th order PDE. A strictly
related technique had been introduced in [7, 5, 12, 98], where the high order
functional is split into two second order differential equations. First the
orientation information represented as an unitary vector field is propagated
and then the color information is diffused along this vector field.

All these models work directly on the two dimensional image space. In order
to make occluded and occluding objects present at the same time in the
image, in [65] (and then again in [25]) a third dimension is introduced, and
the objects present in the image are represented as a stack of sets, ordered
by depth. In [85] the third added dimension is represented by the time, the
algorithm first detects occluding objects, then those occluded. However these
algorithms do not allow for self occluding objects.

To overcome the occlusion restriction, in [14] a completion model was pro-
posed based on the functional architecture of the visual cortex, where the
completion is fully performed in the rototranslation group SE(2), allowing
for the simultaneous reconstruction of occluding and occluded objects. The
basic idea is the following: a two dimensional image is lifted onto a surface
in the 3-dimensional sub-Riemannian space, an occlusion is considered as a
hole in the surface, and the proposed model completes the missing part of the
image with a minimal surface. Computing a minimal surface in the hole and
re-projecting it over the image domain, the authors found the same level lines
as those found by Morel and Masnou in [55]. The gray-level is propagated
from the boundary to the interior using a Laplace-Beltrami operator on the
computed surfaces.
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Geometric properties of the Sub-Riemannian minimal surfaces have been
proved by S. Pauls and R. Hladky in [38], which provided a quick method
for disocclusions. However their approach is no able to handle simultaneous
occluded and occluding objects.

5.3 Lifting the existing level lines in a 3D

space

Let us start by recalling the Citti and Sarti model [14]. An image I can be
represented as a bounded function defined on a domain M ⊂ R2, I : M → R+.
The points of M have coordinates (x, y).

As seen in the previous chapter, the output of the simple cells in response
to a visual stimulus I is a function u defined on the 3D cortical space. This
function u can be interpreted as the cortical activity. The maximal selection
mechanism then detects, at every point (x, y) pertaining to a level line of I,
the orientation θ(x, y) of that level line.

5.3.1 Orientation detection

At every point of the image we detected the tangent direction to the level
lines (Iy,−Ix), where Ix and Iy are the components of the image gradient. If θ
is the angle between the tangent and the x-axis the tangent can be rewritten
as (cos(θ), sin(θ)). Then:

θ(x, y) = − arctan

(
Ix
Iy

)
, θ ∈ S1.

And the image is then lifted to the three dimensional surface Σ:

Σ =
{

(x, y, θ) ∈ R2×S1 : θ(x, y) = − arctan (Ix/Iy)
}
.
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Figure 5.1: An image is lifted into the space of positions and orientations
R2×S1 (left). The resulting surface is foliated by the lifting of the image level
lines (right).

This surface Σ is the lifting of every level line in the image. This point of view
allows us to understand a remarkable property of Σ: it is a ruled surface (see
[14, 38]). In fact, since two level lines of an image never cross, also the lifted
level lines do not. Then, we say that the lifted surface is foliated by the lifted
curves (see Fig. 5.1). We will call rule every curve foliating the surface Σ.

5.3.2 The lifted surface as a surface of maxima

Let us now represent the surface Σ as the surface of maxima of a suitable
function u : R2×S1→ [0, 1], representing the cortical activity. A possible
choice of such a function is:

u(x, y, θ) = f

cos

θ + arctan
(
Ix
Iy

)
2

2
 , (5.1)

where f : [0, 1] → [0, 1] is a monotonically increasing function such that
f(1) = 1. The squared cosine function is chosen in order to have periodicity
of u in the third coordinate considering it is an angle. Note we have imposed
that the maximum value of u is 1 and that u is always positive. The function
f is used to concentrate the function u around its maximum (the surface Σ).
A possible choice of f is: f(x) = xα such that α ≥ 1 or if we want u to be
even more concentrated: f(x) = ex.

From a modelling point of view the function u can be interpreted as an
idealized version of the cortical activity, which attains its maximum on the
surface Σ.
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Figure 5.2: The lifted image can be viewed as a thick surface and the surface
obtained with eq. 5.2. Shown on the right panel there is a test image. Shown
on central panel there is the function u using the volume rendering technique.
The red color indicates high values of u while blue indicates those smaller.
Visualized on the left panel there is the lifted image Σ which corresponds to
the surface of maximum values of u along the fiber over each point (x, y).

5.3.3 Differential geometry of the surface

The surface Σ can be represented as the zero level set of the partial derivative
of u with respect to the variable θ:

Σ =

{
(x, y, θ) ∈ R2×S1 :

∂

∂θ
u(x, y, θ) = 0,

∂2

∂θ2
u(x, y, θ) < 0

}
. (5.2)

The condition on ∂2

∂θ2
u is imposed in order to avoid the minimum of u being

considered as part of the surface. The expression 5.2 allows us to recover Σ
from u. Fig. 5.2 shows an example of the construction of the function u and
the lifted surface.

Therefore, it is possible to define geometrical properties of Σ in terms of the
function uθ and its sub-Riemannian derivatives. The sub-Riemannian gradient
∇SRuθ is orthogonal to the surface Σ and belongs to the horizontal tangent
plane. Then, the surface has only one tangent vector in the sub-Riemannian
structure which writes:

TSR =

(
−X2

X1

)
uθ.

This tangent vector is in the direction of the foliation of the surface. Corre-
spondingly, the rules on the surface can be written as:

γ′ = −X2uθ ~X1 +X1uθ ~X2. (5.3)
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Analogously the diffusion on the surface is the diffusion along the rules. The
foliation feature suggests a natural notion of area in the sub-Riemannian
structure R2×S1. Indeed the area of a lifted surface can be defined as the
integral of the lengths of each rule. With this definition, a minimal surface
with an assigned boundary condition is obtained requiring each rule to have
minimal length.

5.4 The concentration-diffusion process

In [14] it is proposed that the cortical activity, modelled by the function u
(in this work obtained by applying (5.1) to an input image I) is elaborated
through the two cortical mechanisms of non maxima suppression, and diffusion
along the long range connections applied in sequence. The mechanism consists
of:

• the diffusion of existing information in the sub-Riemannian space with
a suitable sub-Laplacian operator;

• the concentration of the diffused information along the third dimension
θ.

In [14] a scheme of this algorithm is proposed and its convergence is proved. As
a result of this convergence, the authors performed the completion by means of
mean driven curvature flow, implemented through a level set method. Here, on
the contrary, we directly implemented the diffusion and concentration process,
which forced us to take an in depth understanding of the concentration step.

5.4.1 The sub-Riemannian operators

The function u represents the cortical activity, and is diffused along the
horizontal connections described in Chapter 4 as integral curves of the vector
fields X1 and X2. If we assume that these two operators have the same role
in the diffusion, we can then describe the diffusion in terms of the operators
X1 and X2 assigning to them the role of the Euclidean partial derivatives.

We define the sub-Riemannian gradient as:

∇SRu =

(
X1

X2

)
u
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and the sub-Riemannian divergence:

divSR

(
u1

u2

)
= ∇SR ·

(
u1

u2

)
= X1u1 +X2u2

The notation SR (sub-Riemannian) is used in order to avoid confusions with
the classical operators. Finally, the so called sub-Laplacian operator, which
is the analogous of the classical Laplacian but in this structure is defined as:

∆SRu = divSR(∇SRu)
= (X11 +X22)u

=
(

cos2(θ) ∂2

∂x2
+ sin2(θ) ∂2

∂y2
+ 2 cos(θ) sin(θ) ∂2

∂x∂y
+ ∂2

∂θ2

)
u.

(5.4)

Then, the sub-Riemannian diffusion equation can be written as:

ut = ∆SRu. (5.5)

Despite of the fact the sub-Laplacian operator is built just with two directional
derivatives in a three dimensional space, the diffusion process reaches each
point due to the non-commutativity of the space.

All the above operators belongs to the horizontal tangent plane, which was
identified as the generator of the differential structure of the cortical inspired
space.

5.4.2 Sub-Riemannian Diffusion

Let D be the domain of the occlusion and therefore the set D×S1 contains all
the fibers above D. The first step of the diffusion driven algorithm consists
of diffusing using the Sub-Laplacian operator (5.4) for a short time with the
fixed boundary conditions in the boundary of D×S1: ∂

∂t
u =

{
∆SRu if (x, y, θ) ∈ D×S1

∂2

∂θ2
u if (x, y, θ) ∈ (R2 \D)×S1 , t ∈ [0, h]

u(0) = u0

(5.6)

In the occluded region we diffuse using the sub-Laplacian operator. This
operator propagates data in the direction of the vectors X1 and X2. The
diffusion in the direction of X1 alone would expand the information taken
from the boundary into the occlusion just in a straight line parallel to the
(x, y) plane. By adding the diffusion into the direction of X2, we allow for
the propagation on the curvilinear paths on R2×S1, even if we make the
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surface thicker represented by u as a side effect. Outside D×S1 we use the
equation ∂

∂t
u = ∂2

∂θ2
u in order keep the same thickness of the surface as in the

interior of D×S1. Note that if we just use this equation for a short time the
maximum of u does not move and therefore the surface Σ does not change.
For the problem of disocclution it is necessary only to consider values of u
near the boundary of D×S1. These values only will be propagated inside
D×S1. Nevertheless, for improvement of visualization we will consider a
larger domain outside D×S1.

The initial function u0 for the diffusion algorithm is given by the output of
the concentration step in each iteration. In the initial diffusion step, where
no concentration was done yet, u0 = 0.

5.4.3 Concentration

After the diffusion, we have to take into account the role of the concentration
mechanism. Hence we have to concentrate the function u over the surface,
i.e. make the thicker version of the surface thinner.

After diffusing u for a period of the time h, the second step of the diffusion
driven motion is to perform a concentration over the maximum of u and
to denote ū as the new function which implicitly defines the concentrated
surface:

ū(x, y, θ) =

(
u(x, y, θ)

umax(x, y)

)γ
, γ > 1 (5.7)

where:

umax(x, y) = max
θ∈S1
{u(x, y, θ)}. (5.8)

The concentration process we present here is completely original. Indeed we
introduced a renormalization step. We renormalize the function u in such
a way that the maximum over each fiber is 1, and the surfaces does not
vanishes asymptotically. The concentration, obtained elevating the function
u to a suitable power greater than one, preserves the value of the maximum
and reduces all the other values of u. Thus this mechanism concentrates the
function around its maximum (see Fig. 5.3).
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Figure 5.3: Example of the concentration process of a single fiber.

5.4.3.1 Multiple concentration

The three dimensionality of the space allows the coexistence of occluded and
occluding objects at the same time. In terms of the function u it means that
we expect to have more than one local maximum in each fiber. However, the
equation (5.8) described before, allows for only one maximum per fiber. We
will modify the concentration in order to avoid this limitation. In particular
we propose a new renormalization criteria.

We first detect the local maxima on a fiber over the point (x, y) as the set
{θ ∈ S1, ∂

∂θ
u(x, y, θ) = 0, ∂

2

∂θ2
u(x, y, θ) < 0}. We call them θ1, . . . , θn with

θi < θi+1. Then we construct a piecewise linear function unorm (Fig. 5.4 )
connecting every local maximum detected and which is periodic in the variable
θ:

unorm(x, y, θ) = u(x, y, θj) + (θ − θj)
u(x, y, θj+1)− u(x, y, θj)

θj+1 − θj
(5.9)

with θ ∈ [θj, θj+1].

We use eq (5.9) to re-normalize every single column of u as follows:

ū(x, y, θ) =

(
u(x, y, θ)

unorm(x, y, θ)

)γ
, γ > 1.
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After renormalization the function ū preserves the local maxima of u and
attains the value 1 at each of these points.

As we mentioned before, this modification allows for more than one maximum
on each fiber.

Figure 5.4: Example of the improved re-normalization process of a single
fiber.

Hence applying this improved concentration technique and the sub-Riemannian
diffusion iteratively, we compute minimal surfaces in R2×S1 which are a union
of graphs of the variable (x, y), which may partially overlap. It corresponds
to the completion of both occluding and occluded object.

5.4.4 Laplace-Beltrami diffusion

At this point we have accomplished the missing information of the lifted
surface with a minimal surface in the sub-Riemannian space. The lifting and
completion processes take into account only the direction of the level lines of
the image, as geometric information. Then the intensity information of the
image is totally missed.

Let us define a function v by extending the values of the image I on the 3D
space:

v(x, y, θ) =

{
I(x, y) (x, y, θ) ∈ (R2\D)×S1

0 (x, y, θ) ∈ D×S1
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We will use the Laplace-Beltrami diffusion algorithm in the sub-Riemannian
setting introduced in [14], to propagate the function v along the rules of the
minimal surface. Since the rules of the surface, defined in (5.3) only depend
on ∇SRuθ, the Laplace Beltrami operator is a linear operator in the variable
v whose coefficients depend on ∇SRuθ:

∂

∂t
v =
|X2uθ|2X2

1v + |X1uθ|2X2
2v

X2
1uθ +X2

2uθ
− X1uθX2uθX12v −X1uθX2uθX21v

X2
1uθ +X2

2uθ
.

(5.10)

The Laplace-Beltrami operator is the analogous of the Laplace operator
restricted to surfaces or manifolds. In this case, the Laplace-Beltrami operates
on the surface of maxima under the sub-Riemmanian metric. The idea is that
the diffusion of the intensity is only performed along the rules of the surface,
which if projected should be the level lines of the image in the occluded region.
The height of the rules is their orientation. We are then diffusing along
the image level lines. This idea is not new and is similar to the inpainting
algorithm proposed by Bertalmio et Al. in [5].

The expression of the operator in (5.10) seems complicated, but its deduction
in this case is relatively straightforward. The sub-Riemannian Laplace-
Beltrami is a second derivative along the direction X1 + kX2. As the surface
is minimal, it is ruled by geodesics with constant curvature k = X1uθ

X2uθ
(this

property was proved in [38]). Then it follows that the Laplace Beltrami is
(up to normalization):(

X1 −
X1uθ
X2uθ

X2

)(
X1 −

X1uθ
X2uθ

X2

)
Expanding this last expression and using the fact X1uθ

X2uθ
is constant along the

rules, we get the right hand side of (5.10).

5.5 Numerical scheme

For the diffusion we use a finite difference scheme. Let us consider a rect-
angular grid in space-time (x, y, θ, t). The grid consists of a set of points
(xl, ym, θq, tn) = (l∆x,m∆y, q∆θ, n∆t).

Following the standard notation, we denote the value of the function u at a
grid point by unlmq. We use forward differences in order to approximate the
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time derivative:

Dtu =
un+1
lmq − unlmq

∆t

and centered differences for the spatial ones:

Dxu
n
lmq =

un(l+1)mq − un(l−1)mq

2∆x

Dxxu
n
lmq =

un(l+1)mq − 2unlmq + un(l−1)mq

(∆x)2
.

The second directional derivatives are approximated with:

D11u
n
lmq = cos(θq)

2Dxxu
n
lmq + sin(θq)

2Dyyu
n
lmq

+2 cos(θq) sin(θq)Dxyu
n
lmq

D22u
n
lmq = Dθθu

n
lmq

We impose the Neumann boundary conditions on x and y and the periodic
boundary conditions on the third direction θ. The time step ∆t is upper
bounded by the usual Courant-Friedrich-Levy condition that ensures the sta-
bility of the evolution [11]. The completion algorithm was fully implemented
in C++ using the ITK library. For visualization purposes we used the VTK
library.

5.6 Experiments and results

5.6.1 Macula cieca example

In this experiment we consider the completion of a figure which has been
partially occluded. This example mimics the missing information due to the
presence of the macula cieca (blind spot). The blind spot is the place in the
visual field which corresponds to the lack of photoreceptors on the retina, due
to the optic nerve passing through it. Since there are no cells to detect light,
part of the visual field is not perceived. The human visual system modally
completes it, so the blind spot is not perceived.

As described in the previous section the occluded image is lifted to a surface
with a hole in the three dimensional space and an initial surface is defined
in the missing part with a classical Euclidean diffusion equation. Then the
surface is evolved by applying iteratively equations (5.6) and (5.8) until a
steady state is achieved.
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Figure 5.5: Macula cieca example: original image (left), Initially lifted surface
(center) and the minimal surface computed (right).

The image dimensions are 100×100 pixels, and we use 100 values to discretize
the variable θ. For the preprocessing step 100 iterations of the Euclidean
heat equation were made using a time step of ∆t = 0.1. The steady state was
reached after 20 iterations with a concentration power in (5.7) of γ = 2 and
20 steps with ∆t = 0.1 of the sub-Riemannian heat equation (5.6).

Figure 5.6: Gray level diffusion in the macula cieca example.

5.6.2 Occlusion example

In Figure 5.7 an occlusion problem is considered. The initial image (top) shows
an underlying object partially occluded by a vertical stripe. The human visual
system simultaneously segments the occluding object and amodally completes
the occluded one, capturing both at the same time as perceived units. In
the numerical experiment first the image is lifted in the sub-Riemannian
space and the missing information is completed. The result shows that the
partially occluded object has been completed and the occluding one has been
segmented. Both objects are present at the same time in the three dimensional
space.
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Figure 5.7: Occlusion example: mean curvature evolution with 2 simultaneous
surfaces. The upper panel shows the test image, a vertical bar is occluding
a background made of an horizontal wave. Shown in the bottom panel is
the function u in the initial state (immediately after the lifting), and after
successive iterations of the diffusion-concentration algorithm.
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For this example the dimensions were again 100 × 100 × 100 pixels. No
preprocessing step is needed. The steady state was reached after 10 iterations
with a concentration power of γ = 2 in the equation 5.7 and 10 steps with
∆t = 0.1 of the sub-Riemannian diffusion step.

5.6.3 Other examples

Shown in Figure 5.8 are three examples of completion performed with the
diffusion concentration method. In the first case (top row), the missing area
is expected to be completed with a surface ruled by straight lines. In the
second experiment, the final surface should be ruled with curved lines and
the result is the expected. These two examples are similar to those presented
by Hladky and Pauls in [38] where the authors perform the completion of the
missing part with minimizing independently the length of every level line in
the missing region. Finally, on the bottom row, the completion was performed
on a real image. The algorithm only work under controlled conditions where
there is a gradient of illumination on the objects and there are no textures.
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Figure 5.8: Shown in every row are three examples of perceptual completion
obtained by means of the diffusion concentration algorithm. In the example
in the first row each level line in the occluded region is expected to be straight.
In the second row, the level lines in the occluded region are expected to be
curved. The final row shows the result of applying the completion method on
a real image.
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5.7 Discussion

The objective of this work was to test the plausibility of the diffusion con-
centration scheme in the cortical inspired space. We focused on the prop-
agation of the orientation information and tested if the resulting minimal
surface is coherent with the rest of the image. We outlined that the cor-
tically inspired diffusion-concentration algorithm is better than the simple
sub-Riemannian heat operator (5.5) to accomplish the completion task. Dif-
ferent sub-Riemannian completion models in literature adopt the simple
sub-Riemannian heat operator. In the opposite, in the present study the dif-
fusion was immediately followed by a concentration step allowing to keep the
activity information concentrated around the surface of maxima. In [20, 21]
the sub-Riemannian heat operator operator was used for filtering elongated
textures which is a different problem than the perceptual completion. In the
following chapter a new operator will be introduced which could be better
suited for modeling the pattern of lateral connectivity.

Let us observe that with respect to the original work of Citti and Sarti
many parts of the algorithm have been simplified, for example, the lifting
of the image to the R2×S1 is achieved by computing the orientation of
the gradient. However only non-textured, gray scale images can be used.
Moreover, completion is performed only in the direction induced by the
contours or the level lines of the images. The inside of the objects was not
taken into consideration. The purpose was facing the problem of perceptual
completion of contours and not the filling in. The perceptual completion is
much more complex than only contour completion, and many features need
to be taken into consideration, not only the local orientation.

From the numerical point of view the concentration diffusion scheme presents
some open problems. The convergence of the diffusion concentration to the
mean curvature flow of the surface of maximum was formally proved on [14],
but the convergence of the numerical method used is not proved. However,
in the examples presented, the resulting surfaces performed correctly the
completion.
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Chapter 6

Boundary propagation in SE(2)

6.1 Introduction

In this chapter a probabilistic approach to the perceptual completion problem
is carefully reviewed. It is also provided the link to the cortical model of
V1 presented in the previous chapters. The objective is to show how these
models can be re-interpreted with a group theoretical approach. The models
presented here are all based on an advection-diffusion equation in the space
R2×S1, i.e. a Fokker-Planck equation, which is used in different ways to
address propagation and enhancement of contours. We will describe how
this Fokker-Planck operator is related to the SE(2) geometry of the cortical
space presented in Chapter 4. Then we introduce a new time-independent
fundamental solution of the Fokker-Planck operator which encodes a more
reliable connectivity pattern in the group in comparison to the integral curves
and the sub-Riemannian heat kernel of the previous chapter.

The models presented in this chapter were mainly developed over the last 20
years, but all constituted a formalization of the concept of good continuation
of boundaries elaborated by the Gestalt Theory. Many models rely on the
seminal work of David Mumford [62], which considered a contour as a path
described by a particle moving according to certain deterministic laws but
suffering a random drift. This allowed us to set the contour problem on a
stochastic differential equation framework. Finally, this kernel is compared
with the Tensor Voting [58], a well known heuristic technique for perceptual
completion proposed by G. Medioni.

More precisely, the chapter is structured as follows:

• Section 6.2.1 contains theoretical basis of stochastic calculus. The
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equations presented are illustrated with a very simple example, an
isotropic Brownian motion in the plane.

• Section 6.3 presents the Mumford direction process and the associated
Fokker-Planck equation.

• Section 6.4 is devoted to reviewing previous works based on the Fokker-
Planck equation for image processing and boundary completion.

• Section 6.5 presents the Fokker-Planck equation as the natural advection-
diffusion equation in the SE(2) group introduced in Chapter 4.

• Section 6.6 presents two different alternatives for calculating the fun-
damental solution, using an analytical approximation of the group
differential space and numerically simulating the equation with a finite
element method technique.

• Section 6.7 compares our model with the tensor voting method.

6.2 Langevin and Fokker-Planck equations

6.2.1 Theoretical background

At the beginning of the nineteenth century, the Scottish botanist Robert
Brown observed that pollen grains suspended in liquid performed an irregular
motion. The motion was later explained by the random collisions with the
molecules making up the liquid. To describe the motion mathematically it is
natural to use the concept of a stochastic process W (t), interpreted as the
position at time t of a pollen grain. This process is called Brownian motion
or equivalently the Wiener process.

Similar stochastic behaviors were observed in a great number of applications,
and in our case we will use them to model contours in images. For simplicity
alone, let us come back to the original example and interpret a contour
as the trajectory described by a particle moving in a fluid according to
certain deterministic law (for example under the effects of a damping force),
but suffering unpredictable random fluctuations due to collisions with the
microscopic molecules of the fluid. The equation modelling this situation
is known as the Langevin equation. Because of these fluctuations we do
not know the exact position of the particle, but instead we can compute
the probability to find the particle in a particular region. Such information
is given by the Fokker-Planck equation, a deterministic partial differential
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equation whose variable is the probability density function of the particle
location.

In the sequel we will give the general form of the Langevin equation and its
associated Fokker-Planck equation respectively. In [67, 78] readers can find a
detailed explanation and deduction of both equations. A good introductory
but rigorous text on stochastic differential equations is Lawrence C. Evanss
lecture notes [26].

6.2.1.1 Langevin equation

The stochastic process introduced before is well described by the Langevin
equation. The m-dimensional Langeving equation has the general form:{

dξ(t) = H(ξ(t), t)dt+B(ξ(t), t)dW (t)
ξ(0) = x0,

(6.1)

where:

ξ(t) =

 x1(t)
...

xn(t)

 (6.2)

are the stochastic variables (the position of the point in the moving particle
example),

H(ξ(t), t) =

 h1(ξ(t), t)
...

hn(ξ(t), t)

 (6.3)

is the deterministic drift and

B(ξ(t), t)dW (t) =

 b11(ξ(t), t) . . . b1m(ξ(t), t)
...

...
bn1(ξ(t), t) . . . bnm(ξ(t), t)

 dW (t) (6.4)

is the stochastic or noise term. W (t) is a n-dimensional Brownian motion.

Observe that the stochastic differential equation (6.1) is a very general equa-
tion for a Brownian motion and can be interpreted as the motion equation
of a particle under a deterministic law given by the vector H altered by a
certain random noise given by BdW (t).
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6.2.1.2 Fokker-Planck equation

The underlying probability distribution of the stochastic process defined by
the Langevin equation is given by the Fokker-Planck equation, also known as
Kolmogorov forward equation. Let p be the transition probability from the
state ξ(t0) at the initial time t0. The Fokker-Planck equation associated with
the general Langevin equation (6.1) is written as:

∂

∂t
p = Lfpp (6.5)

where

Lfp = −
n∑
i=1

∂

∂xi
Ai +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
gij (6.6)

is the general form of the Fokker-Planck operator. The coefficients Ai are
equally called drift, advection or transport coefficients as they correspond to
a first derivative in the evolution equation and are defined as:

Ai = hi +
n∑
k=1

m∑
j=1

bkj
∂

∂xk
bij. (6.7)

On the other hand, the gij coefficients correspond to second order terms and
therefore are called diffusion coefficients, defined as

gij =
m∑
k=1

bikbjk = (BBT )ij (6.8)

In the case of linear constant coefficients, the operator in (6.6) can be written
in matricial notation as follows:

LFP = −∇T · A+∇T ·G∇ (6.9)

where

∇ =


∂
∂x1
...
∂
∂xn

 and G =

 g11 . . . g1m

...
...

gn1 . . . gnm

.
We explicitly note that, if the diffusion term G is positive definite, then it
expresses the inverse of a metric of the space. In case in which B is rectangular,
or has no maximum rank, its columns describe a basis of a subspace of the
tangent space, where G is positive definite; namely the horizontal tangent
space.
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6.2.2 Example: the isotropic Brownian motion

The simplest Brownian motion in the plane is a random isotropic process
such that:

{
dx = σdW1(t)
dy = σdW2(t)

(6.10)

where W1 and W2 are independent standard Brownian motions and σ > 0 is
the “standard deviation in the derivatives”.

In the notation used in eq. (6.1) the isotropic process is described by:

ξ(t)=

(
x(t)

y(t)

)
, H=

(
0

0

)
and B=

(
σ 0
0 σ

)
.

We can discretize the process to simulate certain random paths. The results
are shown in Fig 6.1. These images are valuable in order to visualize the
probability distribution underlying the stochastic process as they can be
understood as Monte Carlo experiments. Shown on the top row are the
arrival points of 100 realizations of the process, always using the same initial
starting point at the center. Each figure correspond to a different value of t
which increases its value from left to right. In the figure in the bottom-right
corner another Monte Carlo experiment is performed and 3000 paths are
plotted together. The gray value of each pixel is proportional to the density
of paths under that location. This is an estimate of a normalized integral of
the probability p for all positive times.
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Figure 6.1: Sample path of the isotropic process. Indicated on the top row
are the arrival points of 100 simulated paths for three different values of t.
From left to right the value of t increases. Shown on the bottom right panel
is the result of plotting 3000 paths together on a lattice. The darkness of
each pixel is proportional to the density of paths at the point. This picture
can also be understood as an approximation of an accumulation for all times
of pictures like that on the top row.

As explained before, one can compute explicitly an evolution equation for
the probability of transition p(x, y, t). This is the Fokker-Planck equation
associated with the stochastic process (6.10). It can be computed according
to eq. (6.5) and in being a simple diffusion equation:

∂p

∂t
=
σ2

2
∆p (6.11)

where ∆ is the 2D Laplacian operator:

∆ =

(
∂2

∂x2
+

∂2

∂y2

)
and the initial condition is p(x, y, 0+) = δ(x)δ(y).
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For σ2/2 = 1, the partial differential equation (6.11) is the well known heat
equation whose fundamental solution Γ(x, y, t), i.e. the solution of:

{ (
∂
∂t
−∆

)
p(x, y, t) = 0,

p(x, y, 0+) = δ(x)δ(y)

writes:

Γ(x, y, t) =
e−

x2+y2

4t

√
4πt

.

An isotropic Brownian motion in the plane is not a good model for a contour.
For example, it is evident that it does not encode the good continuity cue.

6.3 David Mumford’s approach

The Field medal winner D. Mumford [62] developed in the early nineties a
Bayesian approach to the computer vision problem of reconstructing occluded
edges. He proposed modelling edges in natural images as continuous and
almost everywhere differentiable planar curves so that, when occluded in part,
they would tend to reappear with approximately the same tangent line. The
simplest way to model this behavior, is to allow the curvature (function of
the arc length) to be white noise, so the direction function becomes a one
dimensional Brownian motion. This leads to define contours by means of the
following stochastic process:


dx = cos θdt
dy = sin θdt
dθ = σdW (t)

. (6.12)

These equations can be interpreted as the motion of a particle moving with
constant speed in a randomly changing direction. The effect is that particles
tend to travel in straight lines, but over time, they drift to the left or right
by an amount proportional to σ2. When σ2 = 0, the motion is completely
deterministic and particles never deviate from straight paths. When σ2 →∞,
the motion is completely random in the plane.
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Figure 6.2: The top row represents six random paths resulting from simulating
the process (6.12) for three different values of σ. From left to right the value of
σ increase. Visualized in the bottom row are 3000 random paths accumulated
for the same values of σ in the upper row.

Fig. 6.2 shows some simulated random paths generated according to (6.12),
for different values of σ. It becomes empirically evident that these paths are
much better suited as contour continuation models than the two-dimensional
isotropic random path of the previous section. The position of points for
different values of t are shown in Fig. 6.3. In this instance it is necessary to
indicate not only the starting point but also the initial direction (indicated
by the red arrow). Let us observe that the front is strongly polarized, by
contrast to that of Fig. 6.1.

Figure 6.3: The position points for different times t of 100 simulated particles
of the stochastic process (6.12).
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Note that in this case, we need three variables to model the random process:

ξ(t) =

 x(t)
y(t)
θ(t)

 .

The first two variables (x, y) ∈ R2 indicate the position while the third θ ∈ S1

is the orientation. Following the same methodology of the previous section
we get:

H=

 cos θ
sin θ

0

 and B=

 0 0 0
0 0 0
0 0 1

 . (6.13)

The Fokker-Planck equation associated to the Mumford stochastic process
(6.12) can be computed using (6.6):

∂tp = − cos(θ)
∂

∂x
p− sin(θ)

∂

∂y
p+

σ2

2

∂2

∂θ2
p. (6.14)

Within this formulation, the Fokker-Planck operator consists of an advection
term in the direction of the vector (cos(θ), sin(θ)), the direction tangent to the
path, and a diffusion term on the orientation variable θ. The Fokker-Planck
equation is a deterministic partial differential equation modelling the evolution
in the time of p(x, y, θ, t).

In contrast to the heat equation, there is not a simple explicit formula for
the fundamental solution of eq. 6.14. Recently, in [93] and in [22] certain
explicit expressions in the Fourier space have been given in terms of Mathieu
functions.

6.4 Related work in Computer Vision

A probabilistic framework for propagation of contours and their representation
on the space of positions-orientations has been largely used in computer vision
application. Within this section we will describe several of them which are
closely related to the work presented in this thesis as they are explicitly
based on Mumford’s ideas. We will describe them in the following: first the
approach of the stochastic completion fields (Section 6.4.1), second we will
introduce the curve indicator random fields model (Section 6.4.2) and finally
the invertible orientation scores technique (Section 6.4.3).
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6.4.1 Stochastic completion fields

The approach of the stochastic completion fields, introduced by Williams,
Jacobs and co-workers in a number of articles [95, 89, 96, 99] is a method for
computing the likelihood that a completion joining two contour fragments
passes through any given position and orientation within the image’s plane.
This likelihood is a measurement of the saliency of a possible contour. The
method is based on the same assumption made by Mumford, i.e. that contour
continuation can be modelled by the process (6.12).

Figure 6.4: The stochastic completion fields. Top row left: a single kernel
which is an approximated Fokker-Planck fundamental solution (suitably
integrated in time). Top row center and right: two examples of the stochastic
completion field between different configurations of the source and the sink.
Bottom row: the method applied to two Kanizsa examples of illusory contours,
the triangle (left) and the fish (right) (images are reproduced from [96]).

Let us consider two points (which are states of the stochastic process) P =
(xp, yp, θp) and Q = (xq, yq, θq) representing the endpoints of an occluded edge.
The stochastic completion field is the multiplication of two fields, the source
field and the sink field, associated to the state P and the state Q respectively.
The source field represents the probability that the particle starting at P
will reach the state ξ, the sink field represents the probability that a particle
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beginning at Q will reach ξ and their product (point to point multiplication)
represent their joint probability. Both the source and the sink fields were
identified with the fundamental solution of the Fokker-Planck equation (6.14)
suitably integrated in time. In order to perform the completion, the initial
conditions are set manually, i.e. the position and orientation of the sink and
the source are set ad hoc. Therefore, the method was used mainly as a model
of illusory contours in synthetic images. The completion fields were computed
using different approximations of the Fokker-Planck fundamental solution. In
[95] the authors used a Monte Carlo simulation on a lattice (similar to our
experiment in Fig. 6.2). In [89] the authors deduced an analytical expression
for an approximated fundamental solution (see Section 6.6.1) while in [96]
they constructed this approximated solution by the numerical integration
of the corresponding Fokker-Planck equation. In [99] a translation-rotation
invariant finite element method (FEM) was developed to approximate the
fundamental solution.

6.4.2 Curve indicator random field

The curve indicator random field (CIRF) is a framework for curve enhance-
ment, completion and segmentation proposed by J. August and S. Zucker in
[3, 4] which is partially inspired by the stochastic completion fields approach.
Again the main idea is to use the positions orientations space and Mumford’s
Fokker-Planck equation for propagating the direction information. Neverthe-
less, there exists important differences between both works. In the application
presented in [4], the CIRF is not used for illusory boundary completion but
as an algorithm for improving the saliency of the contours present in the
image, as a preprocessing step for edge segmentation. Instead of manually
setting the source and sink points, they build a three dimensional function
m ∈ L2(R2×S1) measuring the local distributions of orientation for each point
of the image (x, y) [44]. This function m is convolved with an approximation
of the fundamental solution for the Fokker-Planck equation for the direction
process, suitably integrated in time. Note that in contrast to the stochastic
completion fields, there is no product of distributions of sink and source, but
instead an undifferentiated summation of fundamental solutions.

Another improvement of the CIRF is the optional inclusion of the curvature
k = θ̇ as a second state variable so that the space on which the image
is represented is the R2×S1×R. This modification allows better filtering
performance when the curvature of the structures present in the image is high.
The construction of the underlying stochastic process is presented in analogy
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to Mumford’s presentation of the stochastic process. A justification based on
biological evidence for the consideration of the curvature is given in [6].

Figure 6.5: The curve indicator random field filtering a noisy Euler spiral.
The original image is on the left; the result after filtering using the curve
indicator random field based on Mumfords direction process (center) and the
curvature-based process (right). Images are reproduced from [3].

6.4.3 Invertible orientation scores

The techniques described in the sequel were introduced in a number of
scientific publications by Haar Romeny, Duits and co-workers [19, 22, 20, 21].
Their work is focused on the design of an invertible orientation score which
is a function representing an image in the space SE(2). The idea is the
construction of a transformation W : R2 → SE(2) which allows for the
lifting of the image onto an orientation distribution or orientation score. The
function W should be invertible so that the image can be reconstructed from
the orientation score.

The construction of an orientation score is associated with an anisotropic
kernel ϕθ which measures the local orientation at each location. Each filter ϕθ
is obtained by rotating a mother kernel ϕ by an angle θ and each θ-plane of the
orientation score is constructed by filtering the image with the corresponding
kernel. The kernel ϕ should fulfill certain requirements so that the invertible
transformation can be numerically implemented:

• only a finite number of samples of the orientation space are necessary
to construct an invertible orientation.

• the reconstruction is achieved by integrating the orientation score over
all orientations.

• the kernels should be compactly supported.

The transformation function constructed with the above restrictions is rotation-
translation invariant, the same as the reconstruction.
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Similar representations of the image in the space of positions-orientations
have been largely used in computer vision but the main novelty of Duits and
his colleagues work is the emphasis on the invertible transformation.

Once the orientation score is constructed, the authors distinguish between
the use of the left-invariant processes of (6.18) and (6.17). The pure sub-
Riemannian diffusion (6.18) process is used for contour enhancement (signify-
ing in this context the de-noising of elongated structures) while the Mumford
direction process (6.17) based on the advection diffusion (suitably integrated
in time) is used for contour completion of missing boundaries.

6.5 Left Invariant Fokker-Planck equation in

SE(2)

In the previous section we represented contours as planar curves which are
realizations of the direction process proposed by Mumford. The contours
were identified with the paths described by moving particles. The stochastic
process is defined by setting the direction function so that it is a Brownian
motion. The curves can be therefore represented in the three dimensional
space of position and orientations:

γ(x(t), y(t), θ(t)) ∈ R2×S1.

In Chapter 4, we have equipped the space R2×S1 with the structure of the
rototranslation group SE(2). Planar curves were lifted into the group SE(2)
by means of the map:

(x, y)→ (x, y, θ)

were θ is the direction function. A subspace of the Lie algebra was considered
in order to give the space a differential structure. This is called the horizontal
tangent plane and is the space spanned by the two left invariant vector
fields X1 = (cos θ, sin θ, 0) and X2 = (0, 0, 1). We will see that the Fokker-
Planck operator of the Mumford direction process is a natural operator in
the differential structure of the group, and introduce a new time independent
Fokker-Planck equation.

Let us first write the Langevin equation (6.12) on the basis of the Lie Algebra,
and the vector fields X1, X2. This can be done with a special choice of vector
H:

H =

 cos θ 0
sin θ 0

0 1

(h1

h2

)
.
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Analogously, the matrix B has to be left invariant, so that it can be defined
in terms of the coefficients of X1 and X2 as

B =

 cos(θ) 0
sin(θ) 0

0 1

( b̃11 b̃12

b̃21 b̃22

)
With this choice of matrices the Langevin equation becomes

γ′ = h1X1 + h2X2 + (b̃11Γ1 + b̃12Γ2)X1 + (b̃21Γ1 + b̃22Γ2)X2.

Then, the corresponding Fokker-Planck operator becomes:

FPSR = −H · ∇+∇TBBT∇, (6.15)

and the Fokker-Planck equation is:

∂t = FPSR.

Remembering that the vector

∇SR =

(
X1

X2

)
=

(
cos(θ) sin(θ) 0

0 0 1

)
∇

is the sub-Riemannian gradient, we see that

H∇ = (h1, h2)∇SR = A∇SR

if A = (h1, h2) and BT∇ = B̃T∇SR, then the Fokker-Planck operator rewrites
as:

FPSR = −A · ∇SR +∇SR · B̃B̃T∇SR. (6.16)

This general formulation enables us to write as a special case the Fokker-Planck
equation for the Mumford stochastic process, as the two matrices in (6.16)
are left invariant and are of the previous type. It amounts to choose in the
Langevin equation a deterministic coefficient in the direction of X1 (in other
words h1 = 1, h2 = 0), and white noise in direction X2 (B = diag(0, 1))1:

∂t = −X1 +
σ2

2
X22. (6.17)

On the contrary, if in the Langevin equation we choose H = 0, B = diag(1, 1),
assigning the same weight to the direction X1 and X2, we obtain the sub-
Riemannian diffusion equation used on Chapter 5

∂t = ∆SR = X11 +X22. (6.18)

1The notation Xij means Xi(Xj).
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6.5.1 Propagation in the structure of the cortex

In view of the fact that we have interpreted the Fokker Plank equation
(6.16) as a propagation and a diffusion in the SE(2) group, which models
the structure of the cortex, we will interpret this equation as the natural
propagation of the signal in the geometrical structure of the cortex. By now
we have proposed two possible propagators: the diffusion equation (6.18),
and Fokker-Planck equation (6.16). As we said, the first one assigns the
same role to the directions X1 and X2, which is coherent with the sub-
Riemannian Lie group structure only. This operator was used in the previous
chapter as the diffusion operator in the diffusion-concentration algorithm
for perceptual completion; the diffusion along was not enough to propagate
information. Indeed, we have endowed our cortical structure with a co-tangent
structure. This amounts to assign to the direction θ, which is associated to
a cotangent variable, a role completely different (from a differential point
of view) with respect to the role of the variables x, y. In some sense the
variable θ, which expresses the orientation, takes the place of a direction with
an homogeneity different from the homogeneity of directions x, y. Hence the
natural propagation in the contact structure, which respects the difference
between the directions X1 and X2 assigns a stochastic meaning in the direction
X2 and a deterministic meaning in the direction X1. The result is therefore
expressed by a Fokker-Planck equation (6.17).

6.5.2 A forward-backward time independent
Fokker-Planck equation

Most of the models reviewed in Section 6.3 consider a kernel for propagating
information which encodes the probability of having an oriented contour at a
certain position conditioned by the fact that there was an oriented contour at
a particular reference point. In the previous models this time independent
probability was obtained integrating over time the fundamental solution of the
Fokker-Planck equation (6.14). Here on the contrary we propose directly using
the fundamental solution of the time independent Fokker-Planck operator:

−X1p(x, y, θ) +
σ2

2
X22p(x, y, θ) =

1

2
δ(x, y, θ). (6.19)

On the other hand each point of a contour can be described by a particle
that can go either backwards or forwards with identical probabilities in the
direction of the contour. The model for the probability density propagation is
then the sum of two Fokker-Planck Green functions, one which corresponds to
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a particle moving forwards, and the other corresponding to a particle moving
backwards:

X1p(x, y, θ) +
σ2

2
X22p(x, y, θ) =

1

2
δ(x, y, θ). (6.20)

In the two equations above, we have written the Fokker-Planck operator
using the notation of the previous section calling the differential operators
X1 = cos(θ)∂x + sin(θ)∂y and X2 = ∂θ.

Section 6.6 is devoted to the computation of the time independent Fokker-
Planck fundamental solution. First, let us describe this kernel in order to
get some intuition. Visualized in Fig. 6.6 is the comparison between the
forward-backward Fokker-Planck kernel and that corresponding to the sub-
Riemannian diffusion. The images show arbitrary iso-surfaces of the kernels
(colored in red that of the Fokker-Planck and in green that of the diffusion).
The kernels are intended as connectivity patterns in the structure of the
cortex. They should be a stochastic version of the integral curves of the vector
fields X1 + kX2, which were introduced in Chapter 4 as a deterministic model
of the cortical connectivity. This is why the kernels are plotted together with
the fan of integral curves (the black curves). From the picture one can clearly
observe their relationship with the Fokker-Planck fundamental solution. The
kernel seems a thicker version of the fan. The value of the probability decays
slowly along the integral curves and quickly in the direction normal to the
surface ruled by the integral curves. There is also an increment of the decays
proportional to the curvature of each integral curves. On the other hand, the
heat kernel has different properties. There is a strong diffusion along the fiber
at the origin. This may explain why if we want to propagate information with
this operator (as proposed in Chapter 5) a step of concentration is instantly
needed. Otherwise the direction information is lost after some diffusion time,
and there is no longer selectivity of the direction along fibers. This is not
observed in the cortex: simple cells strongly respond to one orientation when
there is a contour (real or subjective).
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Figure 6.6: Comparison between the sub-Riemanninan Fokker-Planck (red)
and heat (green) kernels. The surface visualized correspond to arbitrary
iso-surfaces of each kernel. Shown in black are the integral curves of the
vector fields X1 + kX2 introduced in Chapter 4 as a model for the association
fields [29]. The kernels are intended in this chapter as models of the cortical
propagation of the orientation information in V1.

Figure 6.7 illustrates the additional structure we are proposing as a model of
the visual cortex functional architecture. Each fan of integral curves which in
Fig. 4.9 represented the space connectivity, was replaced by the Fokker-Planck
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kernel.

Figure 6.7: This image illustrates the idealized model of the V1 cortical
architecture. It is obtained substituting in Fig 4.9 the fan of integral curves
by the time independent Fokker-Planck fundamental solution.

6.6 The Fokker-Planck fundamental solution

This section discusses how to compute the time independent Fokker-Planck
fundamental solution. There is not a simple explicit expression useful from
an engineering point of view. Therefore either we perform certain analytical
approximations or we use a numerical method. The first option is discussed
in Subsection 6.6.1 while the second is addressed in Subsection 6.6.2.

6.6.1 Analytical computation of the fundamental
solution

The fundamental solution of FPSR cannot be analytically computed in terms
of simple explicit functions ([22]), so we will compute an approximation of it,
by considering a first order approximation of the operator algebra of SE(2).
The differential operators Xi can be approximated by their first order Taylor
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expansion term X̃i respectively. Therefore if θ is small then cos(θ) ≈ 1,
sin(θ) ≈ θ and we therefore get:

{
X̃1 = ∂

∂x
+ θ ∂

∂y

X̃2 = ∂
∂θ

. (6.21)

The operators X̃i are no longer generators of the Lie Algebra of the SE(2)
group. The Lie algebras span a vector field formed by polynomials of the
canonical base of the tangent space (in this instance ∂x, ∂y and ∂θ). They
are called first order Heisenberg Lie algebras and they are associated to their
respective Heisenberg group. The first Heisenberg Lie algebras are nilpotent
since all their second order commutators are zero while the Lie algebra of the
SE(2) has infinite commutators. However, the X̃i are good approximations
since |X1 − X̃1| → 0 when θ → 0, X2 = X̃2 and the dimension of the
spaces spanned by the Xi and their commutators and by the X̃i and their
commutators are the same. Therefore, the Fokker-Planck operator from eq.
(6.17) in the SE(2) can be also approximated by the Fokker-Planck operator
in a Heisenberg group:

−X1 +
σ2

2
X22 ≈ −X̃1 +

σ2

2
X̃22 = − ∂

∂x
− θ ∂

∂y
+
σ2

2

∂2

∂θ2
. (6.22)

The fundamental solution ΓH(x, y, θ) of the operator from eq. 6.22 has been
explicitly computed by Hormander in [40], using the Fourier transform:

ΓH(x, y, θ) =
α

x2
e
−(xθ− 3

2 y)
2− 3

4 y
2

x3 . (6.23)

Figure 6.8 shows θ-constant planes of the function ΓH(x, y, θ). Each panel
show some level sets colored according to its value. As all the gray-scale
images in this chapter, black indicates the maximum value and white the
minimum.
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Figure 6.8: Fundamental solution of the Fokker-Planck equation in the
Heisenberg group, eq (6.23). Visualized from left to right are the iso-contours
(filled at the top, empty an the bottom) as the value of the angle θ increases.

The function ΓH(x, y, θ) can be integrated over the third variable in order to
obtain the projection over the plane xy of the fundamental solution:

Γ∗H(x, y) =
α

x
3
2

e
− 3

4 y
2

x3 . (6.24)

This function is plotted in Fig. 6.9.

Figure 6.9: From left to right: the density map, the filled and the empty level
sets of the function 6.24, which represents the projection of the fundamental
solution on the image plane.

For small values of x, y and θ both ΓH(x, y, θ) and Γ∗H(x, y) are good approx-
imations of the Fokker-Planck fundamental solution. The main drawback
is that the approximated kernel is no longer left-invariant with respect to
the group law. This can be trivially checked observing that the third coordi-
nate is no longer periodic. This is why in this thesis we use the numerical
computation described in the sequel.
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6.6.2 Numerical computation of the fundamental
solution

We have numerically computed the fundamental solution of the equations
(6.19) and (6.20), using COMSOL Multiphysics v3.5, a Finite Element Method
solver.

In the following we list some of the details of the numerical simulation:

• The boundary conditions are Neumann in the spatial coordinates and
periodic in the directional coordinate.

• The distribution δ(x, y, θ) is numerically approximated by a Gaussian
normalized function:

δε(xi, yi, θi) =

(
1

ε
√
π

)3

e−
1
ε2

(x2i+y
2
i+θ2i ). (6.25)

where (xi, yi, θi) are mesh points.

• The solution is computed on an adaptive mesh.

• The corresponding linear system solver uses a direct method based on
the library UMFPACK.

Figure 6.10 shows some cut-planes for different values of θ of the numerically
computed fundamental solution (only one branch). The colormap is the same
as that of Fig. 6.8.

Figure 6.10: Fundamental solution of the Fokker-Planck equation calculated
with COMSOL. Visualized from left to right are the iso-contours (filled at
the top, empty an the bottom) as the value of the angle θ increases.
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Plotted in Figure 6.11 is the projection on the xy-plane of the fundamental
solution computed with COMSOL.

Figure 6.11: From left to right: the density map, the filled and the empty level
sets of the projection of the COMSOL calculated Fokker-Planck fundamental
solution on the image plane.

Fig. 6.6 shows an iso-surface visualization of the computed kernel. The
descriptions of the kernel and some of it uses were given in the previous
section. In the next chapter the Fokker-Planck fundamental solution is used
to model certain statistics in natural image databases. The introduction of
this kernel is the main contribution of this chapter, in the following section it
is compared with the Tensor Voting method.

6.7 Comparison with G. Medioni’s Tensor

Voting method

In this section we compare the propagation model introduced previously in
this chapter with a well known technique of perceptual completion, Gerard
Medioni’s Tensor Voting [58].

The Tensor Voting had a lot of success during the last ten years in the
computer vision community. It tries to propagate the contour information
using a mixture of the Gestalt rules of good continuation and proximity. It
operates on a space of second order positive definite tensors which represent the
local orientation and its uncertainty. The method was developed heuristically
but the authors claim that has connections with the biological perceptual
mechanism. This section is devoted to reveal the connection between the
Tensor Voting and our model of the visual cortex. Tensors are intended as
second order approximations of the hypercolumns. The stick voting field
(which in the tensor voting is the kernel used to propagate the direction
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information) will be compared to our models of lateral connectivity, the
integral curves of X1 + kX2 and the Fokker-Planck fundamental solution.

6.7.1 From orientation distribution to tensors

In image processing, a typical representation of the local orientation at a
location is provided in the form of two-dimensional non negative definite
tensors. Each tensor indicates the saliency of a perceptual structure at that
location.

A two-dimensional tensor T in this context is a function R2×R2→R given
by:

T (u, v) = vTMTw,

where

MT =

(
T11 T12

T12 T22

)
is a symmetric non-negative definite matrix and v, w ∈ R2 are two dimensional
vectors. Since the matrix MT fully describes the tensor, both the tensor and
the matrix are identified (T = MT ).

A tensor is also equivalent to an ellipse where the axis of the ellipse are the
eigenvectors of MT and their aspect ratio is the ratio of the eigenvalues. The
major axis is in the direction of a potential curve passing through the location.
The shape of the ellipse indicates the certainty of the preferred orientation.
In the limit, a degenerate ellipse with only one non-zero eigenvalue represents
a perfectly oriented point. These ellipses are called stick tensors. On the
other hand, a ball tensor is an ellipse with equal eigenvalues and it represents
a location without a preferred orientation. The size of the tensor encodes the
saliency of the information. Larger tensors convey more salient information
than those smaller.

Let λ1, λ2 and e1, e2 be the eigenvalues and the corresponding eigenvectors
associated with the tensor T such that λ1 ≥ λ2. Then T may be written as
the following linear combination:

T = λ1e1e
T
1 + λ2e2e

T
2 = (λ1 − λ2)e1e

T
1 + λ2(e1e

T
1 + e2e

T
2 ). (6.26)

Note that none of the coefficients are able to be negative as the tensor is non
negative definite and λ1 ≥ λ2.
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Figure 6.12: A generic 2D non negative definite tensor may be written as a
linear combination of a stick tensor plus a ball tensor.

Equation 6.26 implies that T can be written always as a linear combination
of a stick tensor S = (e1e

T
1 ) plus a ball tensor B = (e1e

T
1 + e2e

T
2 ) (see Fig.

6.12). The stick tensor indicates the local orientation of the point (the curve
saliency) while the ball component the uncertainty of that direction. If
(λ1 − λ2) � λ2, the stick component dominates indicating a strong curve
saliency. If (λ1 − λ2) ' 0 there is a high uncertainty in the direction. We can
distinguish two scenarios here, a small saliency (small eigenvalues) indicates
that the point belongs to an homogeneous area. Otherwise, if the saliency is
high, the uncertainty is a consequence of two or more local orientations. For
example the point is at the intersection of two curves.

There are many ways of obtaining a field of tensors from an image, for example
one may compute the so called structure tensor [48], which is computed
applying two Gaussian derivatives.

The two dimensional tensors introduced before may be understood as the
collapse of an orientation distribution function. As previously explained, the
tensors contain more information than just the image gradient. They are
essentially 3D objects. The 3D is clear if we consider the matrix represen-
tation as it is defined by T11, T22 and T12 (T12 = T21). A more illustrative
representation of the 3 degrees of freedom is given by the 2 eigenvalues and
the orientation of larger eigenvector.

Let the function u ∈ L2(S
1) be an orientation distribution function. There

are many ways to construct a tensor Tu associated to u. In this section we
want to compare our model with the tensor voting, so the natural choice is
integrating stick tensors associated to each possible direction and weighting
them with u:

Tu =
1

2π

2π∫
0

u(θ)Sθdθ, (6.27)
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where Sθ is the unitary stick tensor associated to the orientation θ:

Sθ =

(
cos θ

sin θ

)
(cos θ, sin θ) =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)

Equation 6.27 had been used several times in the literature to represent
distributions of orientation as tensors, principally in the area of material
sciences (see [23] for a review). An elegant interpretation of this formula in
terms of the first harmonics of the function u was given in [90].

6.7.2 The stick voting field in SE(2).

The Tensor Voting method [58] is an heuristic technique for the perceptual
completion problem. It proposes propagating the curve saliency information
from input points to their neighbors. Input points are encoded as tensors
and they propagate through tensor fields. The receiver points accumulate the
tensors induced from the inputs (votes). The final saliency of a receiver is
the sum of all the votes from the inputs. Each point could be both an input
point and a receiver. The voting process can be evaluated over all the points
in an image (dense tensor voting) or only on some of the points of interest
(sparse tensor voting). Taking into consideration that a generic tensor can be
decomposed into stick and ball parts according to eq. 6.26 and the voting
fields should be invariant under rotations and translations, it is enough to
specify the field generated by a stick tensor and by a ball tensor. In this
thesis we are interested in the propagation of the curve saliency information,
therefore, only the stick tensor field is described.



100 CHAPTER 6. BOUNDARY PROPAGATION IN SE(2)

y

x

V 2 Θ

k-1

Θ

2Θ

s

l

Figure 6.13: The stick voting field and its parameters.

Let O be an input point on which we know there is a curve so the input
information is encoded by a stick tensor, and P = (x, y) a neighboring point.
For simplicity the coordinates (x, y) are taken relative to the point O and the
orientation of the curve (the orientation of the eigenvector associated to the
non-zero eigenvalue of the tensor) is considered tangent to the x-axis. The
fundamental heuristic assumption in determining the propagation field is: in
the absence of any other information, the arc of the osculating circle from
O to P (the circle connecting O and P , tangent to the orientation of O) is
the smoothest path. In the case of alignment between O and P , the circle
degenerates to a straight line. The method is inspired in the good continuation
Gestalt principle, indeed it is in accordance with the association fields. The
second assumption is that the influence of the input attenuates with the
distance along the osculating curve and with the curvature of the curve. The
above consideration was used to define the voting field SO generated by a
stick tensor at O. It is a tensor field of stick tensors only, each one tangent to
the osculating circles from O and whose saliency decays exponentially with
the arc length s of the osculating circle at (x, y) and with the curvature k.
No vote is performed if the receiver is at an angle larger than 45◦. Then, the
stick voting field writes:

SO(x, y) = e−
s2+k2

σ2 ~V2θ
~V T

2θ (6.28)
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were:

s =
θl

sin(θ)
, k =

2 sin(θ)

l
, θ = arctan

y

x
, l =

√
x2 + y2

and

~V2θ =

(
cos(2θ)

sin(2θ)

)
Taking into account that the 2D projection of the integral curves of the vector
fields X1 and X2 are circles, and that the length of the curves (see eq. (4.7))
are ‖γ′(s)‖2 = s2 + k2, we can then express 6.28 as:

SO(x, y) = e−
1
σ2

∫ 1
0 ‖γ

′(t)‖dtΠ(X1)Π(X1)T , (6.29)

where Π(X1) is the 2D projection of the vector field X1. Note that (6.29)
outlines the relationship between the tensor voting and our model. By
construction the stick voting field is always tangent to the integral curves of
X1 + kX2. The decay function of the stick field is proportional to the length
of the osculating circle from the origin combined with the curvature of this
path. This is coherent with the choice of the SE(2) metric proposed in this
thesis. Visualized in Fig. 6.14 is the decay function |SO(x, y)|. The figure
should be compared with Fig. 6.11 which is the projection on the image plane
of the Fokker-Planck kernel.

Figure 6.14: The tensor voting energy decay function is the modulus of the
stick field of eq. (6.28). Visualized from left to right are the density image
(the gray level proportional to the energy), some filled iso-contours and the
corresponding empty iso-contours.

The tensor field associated to SO(x, y) (which is essentially a vector field), is
depicted in Fig. 6.28. This field should be compared with Fig. 6.16 which
displays the tensor representation of the Fokker-Planck fundamental solution
numerically computed. This tensor field is the result of applying (6.27) to
the fundamental solution.
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Figure 6.15: Stick voting field. Visualized in the figure above is one branch of
the voting field which is essentially a vector field. Shown on the left are the
orientations only while on the right the orientations are colored according to
the decay function (6.28).

Figure 6.16: The 2D projection of the Fokker-Planck fundamental solution
numerically computed. Left: The orientation of the maximum value over each
(x, y) point. Right: The tensor representation calculated according to (6.27).

From these experiments, we may establish the connection between the ten-
sor voting and our SE(2) model of the cortex. The stick field propagates
information as a vector field tangent to the retinal projection of the integral
curves of X1 + kX2. However it operates on a space of tensors. Then, when
information arriving from different sources is combined, the tensors encode
no more than 3 parameters which may be interpreted as a 3D approximation
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of a distribution of orientations. On the other hand, the SE(2) model stores
the contribution received from the sources within a function defined on S1

associated to each point.

6.8 Discussion

In this chapter we introduced a stochastic framework in the SE(2) model of
the cortex. Then, we reviewed a set of well-known computer vision methods for
boundary propagation (all of them inspired by the seminal work of D. Mumford
[62]) which may be interpreted within the sub-Riemannian framework. All
these approaches are based in the Fokker-Planck operator (6.17). We proved
that this operator respects the SE(2) symmetries and is coherent with the
sub-Riemannian structure. A comparison between the Fokker-Planck and the
sub-Riemannian heat operator (used for diffusion of the cortical activity in
the previous chapter) was made. We believe that the Fokker-Planck operator
is better suited as a stochastic model of the lateral connectivity and as a
propagation kernel of the orientation information. However the discussion
about which operator performs best is still an open problem. See for example
the recent preprint [10] in which the authors proposed the sub-Riemannian
heat kernel for perceptual completion.

Subsequently we have shown that the Fokker-Planck kernel fits very well the
edge co-occurrence distribution of natural images. This statistic is closely
related to Mumford’s stochastic process which models the reappearance of
occluded contours.

Last section was devoted to the interpretation of a famous perceptual com-
pletion algorithm, the tensor voting, in terms of the SE(2) geometry and it
was proved that there exists a strong connection between them. The most
interesting comparison is perhaps the relationship between fibers (as distri-
butions of orientations) and second order tensors. This comparison opened
the interesting question about what geometrical structure is encoded by the
visual cortex. Three candidates are in order:

• a section of the fiber bundle, encoding an orientation vector field as a
function of the position in the retinal plane;

• a second order tensor field (like in [58] or in [13]) as a function of the
position encoding more information about orientation distributions;
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• a distribution of probability defined on the full fiber bundle as a function
of the of position and orientation θ and corresponding to a infinite
dimensional tensor field on the retinal plane.

Even if there is not a unique answer to the problem of geometrical encoding,
from our analysis it emerges that there is no apparent reason for which the
cortex should not use the full fiber bundle structure to encode geometrical
information. This structure is really richer than the ones proposed in the
literature based on vector coding and tensor voting. This aspect is strongly
outlined in every part of this thesis where it is stressed the importance to
perform image analysis in the full Lie group instead of on the image plane.
In Chapter 5, our interest has been focused in defining multiple local maxima
on fibers; in Chapter 6 the Fokker-Planck kernel in the full R2×S1 has been
introduced; in Chapter 7 it will be outlined that statistical distributions of
co-occurrences naturally lives in the full R2×S1.



Chapter 7

Natural image statistics in
SE(2)

7.1 Introduction

The objective of this chapter is to compute and model the distribution of
orientated edges in natural scenes within the rototranslation group SE(2).
This work was published in [81].

In order to estimate the probability of co-occurrence of oriented edges, we
improved a standard approach [51, 86, 24, 70, 3] which computes co-occurrence
histograms in large natural image databases. The experimental setup consists
of first detecting edges and their orientations, and then calculating a cross-
correlation histogram. The edge detection mechanism is inspired by the
primary visual cortex architecture. Emulating the action of simple cells in
V1, a bank of oriented edge detection filters is applied to each image in order
to measure the local orientation. If the response over a point (x, y) is strong
enough, the point is classified as a contour with orientation θ (the angle of the
filter with a maximum output). Therefore, oriented edges are represented as
points (x, y, θ) ∈ R2×S1. Then, a cross-correlation between the detected edges
is computed. Assuming a translation invariance a 4D histogram is obtained
in R2×S2 where the coordinates are the coordinates of the relative position
and the respective angles. Finally, taking into consideration invariance of
rotations an histogram in R2×S1 is constructed. The first two coordinates
are the coordinates of the relative position with respect to the primary edge
while the orientation difference is the third coordinate.

The probability in the group SE(2) is modelled using both a deterministic
and a stochastic model. In the first instance, we show that the connections
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between different edges computed as integral curves of the histogram are in
agreement with the association fields [29] and with the integral curves of the
cortical-inspired contact structure of the rototranslation group introduced in
Chapter 4. In the stochastic model, the connectivity between the points in the
group becomes a probability of co-occurrence, regulated by the fundamental
solution of the stochastic advection-equation in the group, i.e. the time
independent Fokker-Planck equation introduced in Chapter 6. The model
equations, while discretized and simulated, are able to predict the qualitative
and quantitative behavior of the probability density of edges co-occurrence
in natural images and a parametric identification allows us to estimate the
variance of this process.

We start this chapter by reviewing the basic concepts of the natural image
statistics and some previous work. Then, in Section 7.3 we introduce a novel
methodology in computing the edge co-occurrence probability in natural
images and visualize the results. In Section 7.4 we describe the deterministic
model and in Section 7.5 we describe the stochastic model for the edge
co-occurrences. Comparisons between experimental data and numerical
simulation and parametric identification of the variance of the stochastic
process are also provided.

7.2 Background

7.2.1 Natural image statistics

There is no doubt that there is a strong connection between the design of our
sensory system and the statistical properties of the environment in which we
live. This connection is implemented through a mixture of adaptations which
are genetically determined (hardwired) and adaptations which adjust to the
environment during our lifetime (plastic) [31]. This link is clear in the design
of our sensory organs. For example, the physical properties of light or sound
were a clear driving force behind the evolution of our eyes and ears.

From another point of view, as illustrated in Chapter 2, there is not a de-
terministic connection between our phenomenological perception and the
physical world around us. Most perceptual capabilities depend on the com-
bination of many sources of stimulus and their organization. Each of these
sources is only probabilistically related to our perception, and the final phe-
nomenological representation is a combination of all these sources. Moreover,
the physiological measurement of the physical signals is contaminated by noise
and distortions of all kinds. Consequently, it is appropriate to use statistical
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terms in order to characterize the natural stimuli. In particular, if we restrict
our attention to the visual system, the stimuli are the natural images or
more explicitly images of natural scenes. These images are projections of the
environment in which we live.

We can see a wide variety of images when observing the world around us.
This may lead us to the idea that natural images are quite random. Natural
images, however, are not white noise so there must be certain structures
which we are able to use to characterize them. Based on this conjecture,
there have been enormous amounts of work during the last 20 years trying to
reveal the underlying structure of the visual stimulus. The application field
of this research is very wide, including efficient image compression, image
analysis, learning and modelling of the perception and the biological visual
system. Two reviews on the statistical modelling of natural images and their
relationship with human vision can be found in [87, 31].

Many kinds of statistics can be calculated, the most simple one can think of, is
to describe the distribution of the image values at a single position assuming
there is translation invariance, i.e. the natural images are still natural when
they are translated. Therefore, these statistics, called first order statistics,
are the same for each point in the image, making them very easy to calculate
since the data can be accumulated at one point. In the case of gray scale
images for example, the distribution of light intensity values describes the
range one can find in a natural environment.

Natural images have the property that separate positions are not independent.
This property cannot be captured by first order statistics. The mutual
dependence between two points is described by second order statistics. The
most popular statistics of this type is the autocorrelation function, measuring
the correlation between the intensity at two points of an image, and the power
spectrum: the Fourier transform of the autocorrelation function. A classical
result is that in natural images the autocorrelation function behaves as 1/f 2

where f is the spatial frequency [27]. Unlike white noise where its spectrum
is uniformly distributed, here it is concentrated at low frequencies. A second
very important property is its scale invariance.

Even though many properties of interest in natural images can be explained
by means of second order statistics, high order statistics (encoding the mutual
relationship between three or more points) are needed to describe other char-
acteristics like the distribution of local orientations, edges, corners, textures
and many other features. Because it is very difficult to evaluate these statistics
directly, the images are often transformed in order to convert these high order
statistics to first or second order.
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7.2.2 Past work on edge distributions

Many experiments have been conducted to characterize the statistical dis-
tribution of the position and orientation of gradients in natural images.
Experiments aimed at estimating the statistical distribution of co-occurrence
of position-orientation couples from large databases of natural images. In
those experiments two types of structures can be identified with different
statistical properties. The first is a co-circular, scale invariant for small angle
differences and in accordance with the Gestalt rule of good continuation. It
has been interpreted as due to edges belonging to the same contour. The
second is a parallel structure (parallel edges are statistically significant) mainly
due to the presence of textures. In this Chapter we will address only the
co-circular structure from both a deterministic and a stochastic point of view.
The parallel structure will be analyzed with similar instruments in Chapter 9.

In the sequel we review some of the previous experiments on natural image
statistics which inspired our work.

Krüger

The first work on statistics of co-occurrence of edges is due to Krüger [51].
He computed a 4D co-occurrence histogram in a database of 98 outdoor
natural images (512×512 px) and considered 4 different orientations using
Gabor filters (a squared sum of the response from both the odd and even
kernel is used as a measurement of the edge energy [61]). Some of his results
are illustrated in Fig. 7.1. He observed an elongated structure correlating
collinear edges. In order to prove that this structure is independent from
the shape of the filters, he tested the methodology on images of white noise
and the structure disappeared. Nevertheless, the low angle resolution of the
histogram did not allowed him to note the co-circularity pattern reported in
subsequent works. A second observation is the presence of a less important
but still significative parallel structure which can be seen in the level curves
corresponding to low values which looks like a wide cross.
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Figure 7.1: Level sets of the co-occurrence histogram reported by Kruger [51].

The two following works presenting correlation reports were published almost
contemporaneously at the beginning of the decade and are probably the most
cited papers in the field.

Geisler et al.

The work of Geisler et al. [32] was done using 20 representative natural images
(512×512 px), filtered with Gabor kernels at 18 different orientations between
0 and π (every 10 degrees). A drawback of this work is that they manually
labelled all the edges belonging to the same contour, making the approach
non-automatic. This very in depth post-processing allowed them to get rid
of the parallel structure. Rotation invariance is assumed by considering a
3D system of coordinates (d, φ, θ) formed by the distance d between the two
elements, their orientation difference φ and the direction relative to the second
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edge θ (see Fig 7.2 left). The resulting histogram is shown in Fig. 7.2 right
where a superposition of color-coded oriented bars is used. The color of each
bar is proportional to the probability (after a Bayesian normalization). The
position and orientation are in accordance to the configuration. Using this
visualization technique one can get an idea of the whole 3D histogram, and
moreover, a graphical illustration of the variance in the relative orientation of
each single relative position.

Figure 7.2: Geisler et al. experiment [32]. The coordinate system is visualized
on the left and on the resulting histogram on the right.

Sigman et al.

Without any doubt, our main source of inspiration is the work from Sigman
et al. [86]. They were the first to compute the co-occurrence probability
in a very large database using high performance computing (the reported
histograms are reproduced in Fig. 7.3). For implementation details we refer
to Section 7.3, as we followed their approach. We used the same natural
image database and performed the filtering using the very efficient steerable
architecture with the parameters reported by them. The main difference is
that we used an odd filter instead of an energy edge function. This is because
we were interested in taking into account the polarity of contours as we will
detail later. In [86] it was formally tested for the first time a co-circularity
rule underlying the structure of natural images. The parallel structure was
observed as a statistically significant structure.
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Figure 7.3: The histograms reported by Sigman et al. [86]. Their shape is
interpreted in accordance with the co-circularity rule.

Elder and Golberg

In [24], using a method similar to that of Geisler et al. (using human
interaction for labelling edges), Elder and Golberg formally show that the
statistics of co-occurrence is invariant with respect to scale and that a co-
circularity constraint underlies this distribution. A second and interesting
improvement was to extend the mechanism to test the statistical power of
gestalt cues other than that of good continuation (similarity and proximity).
Similar results with a fully human segmented database were presented by
Martin et al. [53].



112 CHAPTER 7. NATURAL IMAGE STATISTICS IN SE(2)

Jonas and Zucker

In [3, 4], Jonas and Zucker used the correlations statistics in an image
processing application. They computed the histograms for individual images
showing the differences according to the type of structures present in each
one (see Fig 7.4). These histograms were used to adapt or “tune” the CIRF
algorithm described in Section 6.4. A characteristic of this work is the use
of a very fancy edge detector filter bank [44] and the rotation invariance
hypothesis which they called the “statistical homogeneity assumption”.

Figure 7.4: Examples of some histograms reported in [3]. Shown in each
column at the top is the original image and below the corresponding histograms
for 3 different orientations (image reproduced from [3]).
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7.3 Natural image edge co-occurrence

statistics

In this section we describeet al the technique for computing the co-occurrence
histogram of edge orientations in a database of natural scenes. As indicated
before, many co-occurrence histograms have been reported over the last few
years [51, 86, 24, 70, 3, 32], but we adapted the approach of Sigman et al. [86]
given that we considers it to be the most reliable method. We chose the same
image database and the same parameters for the numerical implementation.
Nevertheless our method has some differences. We decided to use only an odd-
symmetric kernel for the edge detection mechanism instead of the edge energy
function [61]. This choice allowed us to consider the polarity of the contrast
of contours, distinguishing between image gradients from a darker zone to a
lighter zone to the opposite. Therefore the considered set of filters is indexed
by the whole circle θ ∈ [0, 2π). The kernels used were directional derivatives
of a Gaussian filter (DoG) implemented using the steerable filter architecture
which permits us to achieve a very efficient computational implementation
[30]. The second improvement is the rotation invariance hypothesis which
was reported and tested in some of the previous histogram reports [24, 3] but
was not considered in [86].

Our method can be summarized in four steps:

1. Filter each image of the database with a set of oriented edge detection
kernels.

2. For each image perform non-maximal suppression with a threshold in
order to obtain a list of points (x, y, θ) corresponding to edges with
their respective orientations.

3. Count how many times two detected edges with relative position
(∆x,∆y) have orientations (θc, θp) and store the data in a 4D histogram
in R2 × S2.

4. Project the data of the 4D histogram to a 3D histogram where the third
coordinate is the relative orientation.

7.3.1 The Image Database

The image database was obtained from the website: http:// hlab.phys.rug.nl
/ imlib / index.html [91, 92] and it has been used many times in literature
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to compute natural image statistics [88, 86]. It consists of 4000 high quality
gray scale digital images, 1536× 1024 pixel and 12 bits in depth. Analyzing
images captured by digital still cameras have been the most common method
of measuring natural scene properties. In Fig. 7.5 some representative images
from the database are shown. The images are all outdoor photographs and
were taken in strict natural scenarios as in human modified environment
(rural and urban).

Figure 7.5: Examples of some natural images taken from the image database
[91] and used for computing the contour statistics.

7.3.2 Steerable filtering

We used the steerable filter architecture from [30] in order to process the
image database because of its computational efficiency. In our calculations,
as in many other applications, we needed to find the response of a filter at
many orientations, i.e. each kernel is the rotation of a mother kernel. Instead
of performing one filtering for each possible orientation, one can apply fewer
filters corresponding to fewer angles and interpolate between the responses.
With the correct filter set and the correct interpolation rule, it is possible
to determine the response of the filter at arbitrary orientations without
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explicitly applying it. Therefore, the basic idea for reducing computations
is to synthesize filters of arbitrary orientations from linear combinations of
basis filters.

We decided to use first order derivative of Gaussian (DoG) filters as orien-
tation detectors. Shown in Fig. 7.6 are oriented DoG filters for 8 different
orientations. As seen in Chapter 3 and 4 these filters are directional derivative
operators and are often used to model simple cells of V1 which are also
intended as local orientation extractors.

The computation of the steerable basis in this instance is very simple. Let
Gθ be a first derivative of a Gaussian function in the direction of θ (we set
the variance of the Gaussian function σ = 1 for simplicity):

Gθ = −2(x cos θ + y sin θ)e−
x2+y2

2 . (7.1)

This function can be trivially re-written as:

Gθ = cos(θ)G0 + sin(θ)G
π
2

where G0 and G
π
2 are the first x-derivative and y-derivative of a Gaussian

function, respectively:

G0 = −2xe−
x2+y2

2 , G
π
2 = −2ye

x2+y2

2 .

This means we can obtain a filtered image corresponding to any oriented
kernel by taking linear combinations of the images filtered with G0 and
G

π
2 . Therefore, our steerable basis is {G0, G

π
2 }, meaning that only two 2D

convolutions are needed to generate the whole set of filtered images.

Finally we observe that both G0 and G
π
2 are separable kernels:

Gθ
1 =

(
−2xe−

x2

2

)(
e−

y2

2

)
, G

π
2
1 =

(
−2ye−

y2

2

)(
e−

x2

2

)
, (7.2)

thus reducing the 2D convolutions to the concatenation of two 1D filters.
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Figure 7.6: The edge detection mechanism is inspired from the architecture
of the primary visual cortex since we try to reproduce the hyper-columnar
architecture using the bank of DoG filters (top row). In this figure only 8
different orientations were considered. Each filter (top) imitates the impulse
response of the simple cells of V1. The test image is a circle. The output
of the filtering are the gray level images. Last row is the result after non
maximal suppression. A circular color code scheme is used to represent the
orientations detected in the central colored image.

In our implementation, the variance of the DoG filter is set to σ = 1 and a
support of 7 pixels is chosen following [86]. The orientations were discretized
at 32 different values (−15 π

16
, −14 π

16
, . . . , − π

16
, 0, π

16
, . . . , 15 π

16
, π).

For each image the filtering process produced a stack of filtered images, each
one obtained by a convolution with the kernel of orientation θ. We performed
non-maximal suppression consisting of selecting for each pixel the maximum
output of the filters as θ changes. Then we constructed a list of triplets
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containing the pixels (x, y) where the maximum exceeded a fixed threshold,
and the corresponding orientation θ where the maximum is achieved.

7.3.3 Cross-correlation assuming translation
invariance

For each image we have computed a list of points (xi, yi, θi), which represents
the set of positions of the contour points and their orientations, and we can now
estimate the statistics of co-occurrences. Given any pair of points (xi, yi, θi)
and (xj, yj, θj) in the list we say that we have a co-occurrence of two points
with relative positions ∆x = xj−xi, ∆y = yj−yi and with orientations θi and
θj. Hence every co-occurrence is represented by a quadruplet (∆x,∆y, θi, θj),
which we store in a four-dimensional histogram. In other words, we count
how many times the quadruplets occur. In this procedure we only take into
account couples of oriented points satisfying |∆x|, |∆y| < d. The translation
invariance is reflected in the fact that we are considering relative positions of
the edges.

The same procedure is repeated for all considered images and the result is
accumulated in a 4D histogram.

Hxo,yo,ΘoL

Hx1,y1,Θ1L

Dx

Dy

Figure 7.7: Geometric configuration of two edges in an image. The black bars
represent the first edge at position (xo, yo) with orientation θo and the second
at (x1, y1) with orientation θ1. The co-occurrence histogram is defined with
respect to the (∆x,∆y, θ0, θ1).

Within this work we chose d = 32 pixels so that the total size of the histogram
is 65×65×32×32.



118 CHAPTER 7. NATURAL IMAGE STATISTICS IN SE(2)

7.3.4 Cross-correlation assuming rotation invariance

The rotation invariance implies that we consider relative orientations and not
absolute ones. This is achieved by projecting the points (∆x,∆y, θi, θj) of
the 4D histogram on the rotated point:

(η, ξ,∆θ) = (R∆θ(∆x,∆y), θj − θi) (7.3)

where R∆θ is the matrix of rotation of the vector (∆x,∆y) by an angle
∆θ = θj − θi.

Hxo,yo,ΘoL

Hx1,y1,Θ1L

Ξ

Η

DΘ

Figure 7.8: The change of coordinates allowed us to consider relative orienta-
tions so that the final histogram lives in the space R2×S1.

Finally, we normalized the full histogram over the total number of occurrences
to get the probability of observing an edge element at every possible relative
position and orientation difference from a given (reference) edge element.
This normalized histogram estimating the probability density function of
co-occurrences of a particular geometrical configuration of contours is denoted
from now on as H(η, ξ,∆θ).

With the parameters reported, the total size of H is 65×65×32. The total
computation time for the histogram was around 10 hours. The computation
time for each image depends on the quantity of contours found on it. The
mean value registered for the 4000 images in the database was approximately
10 seconds. The histograms were calculated on a Core 2 Duo 2.1GHz laptop
computer and the programs where implemented in C language. Visualization
of the histogram is provided in Section 7.3.5.
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7.3.5 Results

In this section visualization of the computed histograms is provided. Different
visualization techniques are used, each of them is important as it allows to
extract different conclusions.

The histogram is essentially a 4D matrix (3D after the rotation-translation
invariant reduction). Let us consider firstly the 4D case. The first 2 coordi-
nates are the relative positions (measured in pixels) of a certain configuration
of oriented edges, which is indicated by the last 2 coordinates. If the angular
coordinates are fixed, we obtain a 2D image depending on the spatial variables
alone. Theses 2D matrices could be displayed as histograms or simply as
images where the color is proportional to the amount of co-occurrences.

In Fig. 7.9 we present an histogram (top) and an image representation (left-
bottom). In both images the angles are fixed θc = θp = 0 so the histogram
corresponds to two horizontal edges. In both images the x-axis is ∆x and the
y-axis is ∆y. The colormap is the visual spectrum of light, small wavelengths
(purple, blue) which correspond to low values of co-occurrences while high
wavelengths (orange, red) to high probability of co-occurrence. The colormap
is equalized so that the full range of colors is used. This means that the purple
corresponds to the lowest value of co-occurrence while the red to the highest.
The maximum value obviously is achieved at the entrance ∆x = ∆y = 0
where there is always co-occurrence. As expected, the observed structure is
not isotropic (see Fig. 7.9 right-bottom). It is observed a strong correlation
along the x-axis which decreases as the distance to the central point increases.
This is reasonable as it corresponds to the coaxial configuration. On the
contrary, on the direction orthogonal to the direction of the central edge
the amount of co-occurrences quickly decays. Since the visualization in the
Figures 7.9 (top) and (left-bottom) carry exactly the same informations, we
will always use the last one in the sequel.
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-30 -20 -10 10 20 30
Dx

5.0 ´ 106

1.0 ´ 107

1.5 ´ 107

Figure 7.9: Shown in the figure is the co-occurrence histogram for the case in
which both the reference edge and the secondary edge are horizontal. (Top)
The height of each block is proportional to the amount of co-occurrences of the
configuration θc = θp = 0. This visualization gives the idea of the histogram,
nevertheless is not really helpful since the amount and dimension of data to
be displayed is too large. (Left-Bottom) In this thesis the histograms will be
mostly visualized as images where the color of the pixel is proportional to the
number of co-occurrences, the x-axis represents ∆x and the y-axis represents
∆y. The colormap is equalized so that the full range of colors is used. (Right)
The graphs represent the values of the histogram sampled along the red and
green lines shown in the figure on the left. The amount of co-occurrences
is indicated in the y-axis. A slow decay is observed along the horizontal
path (the co-axial configuration, tangential to the edge) while a fast decay is
observed along the orthogonal path (the trans-axial configuration).



7.3. NATURAL IMAGE EDGE CO-OCCURRENCE STATISTICS 121

Visualizing 4d data is quite challenging. Displayed in Fig. 7.10 is the 4d
histogram with a technique similar to that used in [51] (see Fig. 7.1). Each
panel contains an histogram corresponding to each possible configuration.
The histograms are distributed on a grid. The orientation of the central edge
changes along the rows while the orientation of the secondary edge changes
along the columns, as indicated in the figure by the half white, half black
circles. The set of orientations was sub-sampled from 32 to 16 for the space
restriction in the figure. Each panel is equalized individually so that the full
range of colors is used. For example, the image plotted in Fig. 7.9 which
corresponds to the couple of angles (θc, θp) = (0, 0) is represented in Fig. 7.10
as the first image from the left in the first row.

Analyzing Fig. 7.10, one can empirically appreciate that the rotation invari-
ance hypothesis is verified. Each column is approximately identical to its
precedent, up to a rotation of the interior structure and a shifting of the panel.
Hence this implies that the histogram only depend on the angle difference,
not on the angles independently.

This remark supports the rotation invariance hypothesis made in the previous
section. In Fig. 7.11 the histograms are visualized after performing the
dimensionality reduction. Note the similarity of this image with the first row
of the 4D histogram plotted in Fig. 7.10 (or with any of the rows or columns
up to a rotation and a shifting). The same histograms are plotted zoomed
in Fig. 7.12 and in Fig. 7.12. The coordinates are the relative position and
the relative orientation. Each panel corresponds to different value of ∆θ
which is indicated in each figure. The reference edge is considered always
horizontal. The orientation of the secondary edge is indicated on right-bottom
of each histogram. The images of the histograms are circular as a result of
the rotation. Fig. 7.12 are displays the histograms for values of ∆θ from 0
to π while in Fig. 7.13 are displayed those where ∆θ takes values from π to
2π. It may be observed that the whole set of histograms is similar to the
first row (or the first column) of the 4D grid in Fig. 7.10, or to any of the
rows (columns) after performing an appropriate rotation. The shape of the
histogram will be clear within the following sections where we will provide
analysis and modelling of them.
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Figure 7.10: A visualization of the 4D histogram. Each panel shows an
histogram corresponding to a different configuration of the two edges. The
orientation of the reference edge is indicated at the top of each column while
that of secondary at the beginning of each row. The coordinates of this figure
are then: ∆x and ∆y in each panel, θc and θp in the grid of panels. For space
restrictions, only 16 different orientations are plot (the full histogram has
32). From this image one can empirically verify the co-circularity hypothesis.
Every row (or column) is approximately equal to that adjacent among a
rotation of each panel by the same angle and a shifting of one place of the
stack of panels.
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Figure 7.11: Visualization of the cross-correlation 3D histogram, obtained
after preforming the dimensionality reduction. Only 16 of 32 histograms
are plotted, so they can be compared with those on Fig. 7.10. All the 32
histograms are visualized in large in the 2 following figures (Fig. 7.12 and
Fig. 7.13).

Figure 7.12: Visualization of the cross-correlation 3D histogram. Shown in
each figure are the histograms for different values of ∆θ. The orientation of
the reference edge is always horizontal while the orientation of the reference
edge is indicated in the right-bottom corner of each panel. In this figure ∆θ
takes values from 0 to π. The histograms are circular because of the rotation
step. This figure continues in Fig. 7.13 where the histograms corresponding
to the remaining values of ∆θ are shown.
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Figure 7.13: Continuation of Fig. 7.12. Shown in this figure are the histograms
corresponding to values of ∆θ from π to 2π.

7.4 Association fields obtained from the

histogram

One of the most important and studied patterns in natural image statistics of
contour configurations is the co-circular pattern, introduced in this field for
the first time by Parent and Zucker in [71]. This property has an interesting
psychophysical counterpart, i.e. the association field, (see [29]) explaining the
good continuation law of Gestalt psychology. The association filed is shown
in Fig. 2.9.

From the neurophysiological point of view, it is largely accepted that the
neural correlate of these association fields are the long range inter columnar
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connections [11, 75, 6]. These connections exist between simple cells of V1
which share almost the same orientation, and are responsible for contour inte-
gration and completion of subjective contours. Many perceptual completion
models inspired by this cortical architecture explain the association field as
co-circular connections. The association field has been modelled as integral
curves of the rototranslation group in [14] (see Chapter 4).

The co-circular property of the edge statistics was first observed in [86].
Within our work we strongly focus on curves, and the co-circularity pattern
is shown by means of a family of curves reproducing the association fields.
Indeed we will deduce a 2D vector field from the histogram, compute its
integral curves and compare them with the previously detected family of
curves, again through integral curves.

Shown in Fig.7.14 is a diagram similar to that used in [86] to interpret
the distribution of edges for each possible configuration. This figure helps
understanding the shape of the histograms shown in Figures 7.12 and 7.13.
Each black bar corresponds to an edge which supposes that there was an
horizontal edge in the center. If the hypothesis of co-circularity is verified,
edges with the same orientation are distributed around a straight line whose
angle direction is half the edge orientation angle. This may be empirically
checked in the histograms.

The histogram is a discrete approximation of the probability density func-
tion for the co-occurrence of edges. At each point (x, y, θ) it expresses the
probability of having a contour conditioned to the fact that there exists a
horizontal contour at the reference point. As in [86], we select for each point
(x, y) the most probable orientation θm, such that

H(x, y, θm(x, y)) = max{H(x, y, θ), θ ∈ S1}. (7.4)

This orientation determines the direction of the unitary vector field:

~V (x, y) = (cos(θm(x, y)), sin(θm(x, y))) (7.5)

depicted in Fig. 7.16. Its integral curves can be computed solving the
differential equation:

{
γ̇(t) = −V (x, y)
γ(0) = (x0, y0)

(7.6)

and these are visualized in Fig.7.16.
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Figure 7.14: This figure gives an intuitive idea of why the co-circularity
pattern is encoded in the histograms. Shown on the left is the histogram
corresponding to an arbitrary value of ∆θ, which is indicated by the black bar
on the left-top corner. As in the previous images, the color is proportional to
the number of co-occurrences in each position. The colormap based on the
light spectrum is indicated on the bottom. The image on the right represents
the co-circular configuration. The blue dashed curves are circumferences
tangent to the horizontal red bar. A relative edge will be co-circular with
respect to the horizontal reference edge if it is tangent to one of the dashed
curves. Therefore, if the orientation of the reference edge is α, the co-circular
rule is respected if the edges are placed along the line with orientation α

2
with

respect to the x-axis. A coherent behavior in the histogram is observed.
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Figure 7.15: Visualized in the figure is the vector field of unitary vectors
oriented by the maximal probability superimposed with its integral curves.
The resulting curves are in agreement with the association field of Field,
Hayes and Hess (see Fig. 2.9) and with the integral curves proposed in [14]
(see Fig. 4.8).

As it is clear from the results, the integral curves of the vector field ~V (x, y)
(Fig. 7.16) optimally approximate the 2D projection of the integral curves
of the vector fields X1, X2 (Fig. 4.8), and both show a co-circular pattern
modelling the association fields of Fig.2.9.

One can easily compute a quantitative comparison between the co-circularity
rule and the most probable orientation for each position given by the his-
tograms (the function θm(x, y)). Co-circularity is verified if θm ≈ −2 arctan x

y
.

Plotted in Fig. 7.16 in blue are the 2-tuples
(
−2 arctan x

y
, θm

)
for each possi-

ble relative position (x, y). All the points should be distributed around the
red curve which corresponds to θm(x, y) = −2 arctan x

y
(strict co-circularity).

The function θm only takes discrete values, therefore the points are distributed
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Figure 7.16: A quantitative measurement of the co-circularity rule en-
coded in the histograms. The blue points in the graph are the 2-tuples(
−2 arctan x

y
, θm(x, y)

)
for each possible position (x, y). The function θm ob-

tained from the histogram only takes discrete values. The red curve indicates
the condition of strict co-circularity θm(x, y) = −2 arctan x

y
. The mean square

error Eθ defined in eq. 7.7 is approximately 0.15 rad and it is on the order of
the quantization step ( π

16
≈ 0.2 rad).

along horizontal lines. The mean square error is Eθ = .15 rad where:

Eθ =
1

n

√√√√∑
x,y

(
θm(x, y)− 2 arctan

x

y

)2

(7.7)

n is the total number of points. The error may seem high (0.15 rad ≈ 8o)
but it is on the order of the quantization step π

16
≈ .2 rad≈ 11o. This is a

strong prove of the co-circularity. A similar experiment with similar result
was already reported in [86].
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7.5 Probability of co-occurrence of edges

In the previous section we proved that the co-occurrence histograms verify a
co-circularity rule. Moreover, from the histograms we were able to extract
co-circular curves which are in accordance with the SE(2) cortical inspired
sub-Riemannian space introduced in Chapter 4 and with the association fields
which is a psychophysical model. It is clear that the histograms encode much
richer information that just co-circularity. The objective of this section is
to model the full histogram as a probability density function in the space
R2×S1.

We propose modelling the probability of co-occurrence of edges with the same
forward-backward Fokker-Planck equation introduced in Chapter 6. The main
reason why we conjectured that the same model proposed for completion of
existing boundaries can be also proposed for the description of co-occurrence
of edges in natural images is that there is the possibility that the geometrical
structure of the cortex is partially learned from the structure of the natural
images, inheriting the same geometrical properties, and the same natural
propagator.

7.5.1 Comparison with the fundamental solution of
the Fokker-Planck equation

The goal of this section is to compare the probability of co-occurrence of edges
in natural images with the Fokker-Planck fundamental solution introduced in
the previous chapter. We recall that the space of position and orientations
R2×S1 in which edges are represented can be identified with the rototranslation
group SE(2) with a suitable sub-Riemannian geometrical structure. This
space models the functional architecture of the primary visual cortex while
the time independent Fokker-Planck equation was proposed as a model of the
lateral connectivity. Here, the same forward-backward fundamental solutions
of equations (6.19) and (6.20) are proposed as a model of the co-occurrence
histogram.

The numerical computation of the fundamental solution was performed using
COMSOL multiphysics, a commercial finite element method solver. The
implementation details are described in the previous chapter. Shown in Fig.
6.6 top is an iso-surface (the surface defined by a constant value of the 3D
function) of a numerically computed fundamental solution with arbitrary
parameters. It is clear the relation between the fundamental solution and
the integral curves (which projected on the xy-plane are co-circular). The
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fundamental solution can be thought as a density distributed around the
surface defined by the integral curves, a thicker version of that surface.

We have interpolated the mesh on which is computed the solution in a
rectangular grid (65×65×32 large) in order to compare it with the histogram.
The only free parameter of the model is σ, the value of the standard deviation
in curvature σ appearing in equation 6.12 on edges belonging to natural
images. The best fit between the experimental and simulated distributions
has been accomplished by minimizing the mean square error by varying the
parameter σ of the equations (6.19) and (6.20). With a discretization step of
0.01 into a range of 0 < σ < 10, the minimum error value result Em < 2%
showing at a quantitative level that the model accurately represents the
experimental distribution. This is in agreement with the Mumford hypothesis
on contour reappearance [62]. Moreover, the minimizer corresponding to
Em results σ = 1.73 pixels−1. This value can be considered as the natural
constant of the stochastic process underlying edge distribution in natural
images.

Fig.7.17 shows a visualization of the resulting histogram (blue) and the
computed fundamental solution of the FP (red). The isosurface corresponding
to the 2 % of the maximum has been selected and a surface rendering
visualization has been adopted. The qualitative resemblance of the two
datasets is evident. As mentioned before, both distributions are thick versions
of the surface generated by the set of integral curves shown in Fig.4.8. The
torsion of the isosurfaces is visible in both datasets.

Note that the sum of the backwards and forwards fundamental solutions are
symmetrical with respect to the origin by construction. This property is also
verified by the histogram H, i.e. given a pair of contour points it is sufficient
to switch the reference between them to verify the central symmetry.

Another numerical comparison between the two distributions is visualized in
Fig.7.18 and Fig.7.19, where isocontour plots at constant θ are shown. Every
θ constant slice corresponds to a configuration of two contours differing by θ in
their orientations. The drop off in correlation strength with distance present
in the figures is strictly related to both the spread of the integral curves of
the deterministic model, and the diffusion term defined by the variance σ.
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Figure 7.17: Top rows: isosurface visualization of the histogram H (blue) and
the FP fundamental solution (red) of the orthogonal projection on the xθ-
plane (left) and on the yθ-plane (right). Bottom Row: idem with orthographic
projection.
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Figure 7.18: Isocontour visualization of the histogram H at different angles θ.
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Figure 7.19: Isocontour visualization of the Fokker-Planck fundamental solu-
tion at different angles θ.
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Figure 7.20: Comparison between the number of co-occurrences in every θ
constant slice in H (after normalization) and the corresponding value in the
Fokker-Planck distribution. The value obtained from the histogram is plotted
in blue while that from the Fokker-Planck is in red. There is a big discrepancy
between the histogram and the Fokker-Planck solution for θ = 0 which we
think is due to the existence of a parallel structure.

Plotted in blue in Fig.7.20 is the amount of co-occurrences of the histogram H
for each θ constant slice and in red that of the integral for the Fokker-Planck
distribution at a constant θ slice after performing a suitable rescaling which is
explained below. The two distributions are almost coincident for all values of
the θ angle strictly less than |π

2
| and different from 0 (collinear configuration).

Over 10% of the co-occurrences of H correspond to collinear edges (θ = 0).
This is explained by the fact that in the natural image database there are
many sharp straight edges corresponding mostly to buildings. The same
argument explains the two peaks present at θ = ±π

2
, orthogonal contours.

As outlined by Fig. 6 in the paper of Olshausen and Simoncelli [87] where
they modelled the same kind of distribution, the distributions had a sharp
peak at 0 and much longer tails than that of a Gaussian density. Field [27]
argued that the representation corresponding to these densities, in which
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most neurons had small amplitude responses, had an important neural coding
property, which he called sparseness. Our invariant model still underestimates
the peak at 0, while it fits the tails of low intensities. The underestimation at
0 can probably be explained by a violation of the rotation invariance of the
image we postulated here. Indeed the probability density is stronger in the
collinear direction. The range of considered values of θ exclude automatically
the presence of parallelism effects, which are statistically significant for larger
values of theta, as shown in [51] as well as in [32]. The modelling of parallelism
in terms of the Lie groups theory has been faced at a purely theoretical level
in [84], and will be studied in terms of image statistics in Chapter 9.

7.6 Discussion

To our understanding this chapter contains the main contribution of this
thesis. We developed the connection between the rototranslation model
for the interaction between oriented neurons in visual cortex and the edge
co-occurrence statistics in natural images. Firstly, we checked that the
association fields are encoded in the co-occurrence probability distribution.
Our pattern (Fig. 7.16) is the proof of a co-circularity hypothesis which was
already successfully tested in literature [86]. Then, inspired by Mumford [62],
the fundamental solution of the time independent Fokker-Planck operator
introduced in Chapter 5 was used to bridge between the geometric model
and the edge statistics. To our knowledge, the only work in literature which
proposed a relationship between Mumford’s direction process and was [4],
but the statistics only were used to “tune” a computer vision algorithm for
perceptual completion.

A reasonable critic to the methods proposed here is that they are based on the
rotation-translation invariance hypothesis. We are applying that hypothesis
to compute our histogram and the models used to predict it derive from the
same symmetry principle. Nevertheless, the invariance seems reasonable if we
visually inspect the 4D histogram (Fig. 7.10). Moreover, if the histograms are
computed using white noise as input images (instead of the natural scenes),
no structure appears. This result was reported by Krüger in [51].

The approach proposed in this chapter is extended in Chapter 8 to a different
Lie Group, the affine group, so it can take into account the scale, another low
level visual features. We expect in future research to extend the method to
consider other low level features as curvature, stereotopic vision, etc.
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Chapter 8

Scale

8.1 Introduction

This chapter presents an extension of the previous one where the feature of
scale is added to the feature of boundary orientation. This leads us to consider
the affine group (the Lie group invariant under rotations, translations and
scaling transformations). The extension of the cortical model was provided by
Sarti, Citti and Petitot in [84] where a symplectic structure was introduced.
The scale takes the role of the distance from a boundary. Then, it becomes
possible to take into account the interior of the objects. Using considerations
similar to that in [14], two sub-Riemannian structures are used as models
for the long range connectivity. One is inherited from the SE(2) model
which models the co-axial connectivity. The second one is responsible for the
trans-axial connectivity and is morphologically different from the previous
one. Then, we develop a new method for computing natural image statistics
so the scale feature may be taken into account. This leads to the consideration
of a 6D histogram. This chapter concentrates in the trans-axial connectivity
since the coaxial connectivity was already studied in the previous chapter.
Analyzing the histogram it is clear the presence of a pattern coherent with
the model. Then, in analogy with the methodology used in Chapter 7, a
differential operator for modelling the trans-axial connectivity is introduced.

137
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8.2 The symplectic structure

8.2.1 Relation with the SE(2) model

In Chapter 4 (following [14]) the hypercolumnar structure of the visual cortex
is modelled as a fiber bundle. The 2-dimensional retinal plane (x, y) is the base
manifold M of the fiber bundle, and the engrafted variable is the orientation
θ of a simple cell with an odd-symmetric receptive profile. The vertical fibers
over each point emulate the hypercolumnar architecture so that the cortical
space is identified with the total space of the fiber bundle isomorphic to
R2×S1. Taking into consideration the appropriate group law, the fibration
is identified with the group SE(2). A visual stimulus represented in the 3D
space is interpreted geometrically as a lifting where the third coordinate is
the local orientation at the point. The connectivity in the group is given by
the directions of the left-invariant vector fields X1 = (cos(θ), sin(θ), 0) and
X2 = (0, 0, 1). A natural sub-Riemannian structure is defined by introducing
a metric on the plane spanned by X1, X2 which are non-commutative. The
projection on the xy-plane of the integral curves of the vector fields X1 and
X2 were interpreted as a model of the association fields [29]. Along these
curves a parallel transport operation was performed.

In [84], the authors extended the previous work to a 4D geometrical model by
considering the organization, connectivity and functionality of even symmetric
simple cells. The cortex is now a fiber bundle were orientation and scale are the
engrafted variables, so that its total space is R2×S1×R. The space is identified
with the affine group in the plane (the group invariant to rotations, translations
and scale transformations) with a symplectic structure. The connectivity is
given by the differential of the one form ω = e−σ(− sin θdx+ cos θdy). In this
case two sub-Riemannian structures are considered whose integral curves are
responsible, respectively, for trans-axial and coaxial connections.

8.2.2 The receptive profiles and the hypercolumnar
architecture

The retinal plane (or equivalently the visual plane) is identified with the plane
R2 with coordinates (x, y). The scale dimension is introduced taking into
consideration simple cells with even-symmetric receptive profiles instead of
the odd receptive profiles. Let ϕ0 be an even simple cell modelled as the real
part of a Gabor wavelet in local coordinates (ξ, η):

ϕ0(ξ, η) = e−(ξ2+η2) cos(2η). (8.1)
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The premise is the same as that in the previous chapters, for each point (x, y)
in the retinal plane there are cells with receptive profiles in the cortex with
all possible orientation θ and scales σ. Then, a generic receptive profile of a
simple cell is obtained by centering the mother kernel ϕ0 at the retinal point
(x, y), rotating around its own axis by an angle θ and scaling it by a value
proportional to σ. This is achieved by the following change of variables:{

ξ = e−σ
(
(ξ̄ − x) cos θ + (η̄ − y) sin θ

)
η = e−σ

(
−(ξ̄ − x) sin θ + (η̄ − y) cos θ

) . (8.2)

The generic receptive profile now writes as:

ϕx,y,θ,σ(ξ̄, η̄) = e−(ξ2+η2) cos(2η). (8.3)

Each cell in the cortex can be represented by the coordinates (x, y, θ, σ) ∈
R2×S1×R which are the parameters of the receptive profiles. Each receptive
profile was obtained by translation, rotation and scaling of a mother kernel.
Precisely, we call

Ax,y,θ,σ(ξ, η) =

(
x
y

)
+ eσ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
ξ
η

)
.

Then each receptive profile can be expressed as

ϕx,y,θ,σ(ξ̄, η̄) = ϕ0,0,0,0A
−1(ξ̄, η̄).

The set of transformations A with the standard composition law form the
affine group. As in Chapter 4 the space of parameters R2×S1×R can be
identified with the affine group.

8.2.3 The lifting into the fiber bundle

The overall output of the ideally modelled cortex with a visual stimulus I(x, y)
(a function of activation on the retinal layer) is given by the integration of
the stimulus weighted by the receptive profiles, plus a maximum selectivity
mechanism. Let Oθ,σ be the result of the filtering:

Oθ,σ(x, y) =

∫
I(ξ̄, η̄)ϕx,y,θ,σ(ξ̄, η̄)dξ̄dη̄, (8.4)
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Figure 8.1: Simple cells act on the image detecting the tangent vector of
optimal orientation (columns) and scale (rows). Each filter can be described
by the 1-form ω3 which is represented as a black arrow within the images.

Then, the cortex associates to each point (x, y), a couple (θm, σm) where the
function O is maximal.

The map from the retinal point (x, y) to the cortical position (x, y, θm, σm) is
interpreted as a lifting of the input stimulus into the fiber bundle R2×S1×R.

The geometrical interpretation of the lifting was analyzed on cartoon images
and generalizes the SE(2) model. If σ = 0 the model is reduced to that of
the previous chapters as the distance to the boundary is 0, and θm expresses
the orientation of the boundary. In [84], it was proved that the output
function Oθ,σ(x, y) reaches a local maximum at the point (θm, σm), where
d(σm) = 1√

2
eσm denotes the distance of (x, y) from the nearest boundary of

the image I, and θm denotes the orientation of this boundary at the point
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where the distance is achieved (see Fig. 8.2).

1

2
eΣ

Θ

Hx,yL

Figure 8.2: The simple cell centered in (x, y) takes the maximal activity
Oθm,σm(x, y) = max(θ,σ) Oθ,σ(x, y) at a point where σm is, up to a constant,
the logarithm of the distance to the nearest boundary and θm is the direction
of this boundary

8.2.4 Left invariant vector fields

The Lie algebra associated to the affine group is spanned by the following left
invariant vector fields:

Xσ,1 = eσ(cos θ∂x + sin θ∂y)
Xσ,2 = ∂θ
Xσ,3 = eσ(− sin θ∂x + cos θ∂y)
Xσ,4 = ∂σ

Let us explicitly note that the vectors Xσ,1, Xσ,2, Xσ,3, have the same direction
as the corresponding vector fields X1, X2, X3, introduced in the previous
chapters. The two vectors Xσ,1, Xσ,3 have been modified in order to take into
account the scale.

We will now introduce to this Lie algebra a symplectic structure, which is
an extension of the sub-Riemannian structure. The two vector fields Xσ,1,
Xσ,2, images of the generators of the horizontal plane are coupled within this
structure, and we can find a linear transformation on the horizontal plane, a
matrix J such that

Xσ,1 = JXσ,2, Xσ,2 = −JXσ,1.
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The vector field X3, uncoupled in the subriemannian structure, is here lifted
to the vector field Xσ,3, and coupled with the vector Xσ,4. The coupling is
realized as

Xσ,4 = JXσ,3, Xσ,3 = −JXσ,4.

The matrix J is a rotation in the 4D space, and plays the same role as
the multiplication by i in the complex space. This generalization of the
complex structure is called the symplectic structure. It is then characterized
by the presence of two different contact structures, with independent sub-
Riemannian metrics. And the horizontal planes are respectively that spanned
by {Xσ,1Xσ,2} and by {Xσ,3Xσ,4}.
The connectivity in this case (formally named symplectic structure) is given
by means of the 2-form dω3 obtained by differentiating the 1-form ω3 with
respect to all its variables:

8.2.5 Integral Curves

If we consider the first part of the symplectic form (the plane spanned by
{Xσ,1, Xσ,2}), we reduce ourselves to the previous model. The integral curves
defined as: {

γ̇(t) = Xσ,1(γ(t)) + kXσ,2(γ(t))
γ(0) = (x0, y0, θ0, σ0)

(8.5)

model the trans-axial connections. The explicit parametric solution is
x(t) = 1

k
(sin(kt+ θ0)− sin(θ0)) + x0

y(t) = − 1
k
(cos(kt+ θ0)− cos(θ0)) + y0

θ(t) = kt+ θ0

σ(t) = σ0

. (8.6)

For k = 0 its projection on the xy-plane is the x-axis and for k 6= 0 it is a
circle of radius 1

k
tangent to the x-axis.

In the same way, we can consider the integral curves of the vector fields
{Xσ,3, Xσ,4}, {

γ̇(t) = Xσ,3(γ(t)) + kXσ,4(γ(t))
γ(0) = (x0, y0, θ0, σ0)

. (8.7)

The solution is 
x(t) = − sin(θ0)

k
eσ0(ekt − 1) + x0

y(t) = cos(θ0)
k

eσ0(ekt − 1) + y0

θ(t) = θ0

σ(t) = kt+ σ0

. (8.8)
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Its projection on the xy-plane is independent of k and orthogonal to the
direction θ0. For the k variable the integral curve is the line of slope k in the
fixed vertical plane spanned by {Xσ,3, Xσ,4}.
The projection of these two classes of integral curves on the xy-plane is shown
in Fig. 8.3. These patterns were intended in [14] as a model of long range
excitatory connections. Two different regions may be distinguished. The one
plotted in blue along the direction of the axis of orientation (co-axial) which
spreads out the model of the association fields. This structure was already
modelled in the sub-Riemannian SE(2) model.

x

y

Θ

x

y

Σ

x

y

Figure 8.3: Visualization of the integral curves of the affine group with the
symplectic structure. Shown are the fields Xσ,1, Xσ,2 (upper-left) and Xσ,3,
Xσ,4 (upper-right), and their projections on the (x, y) plane (bottom).

The symplectic structure considered in this chapter adds a second set of
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connections which are confined to a narrow zone extending orthogonally
to the axis (trans-axial, plotted in red). The trans-axial connections are
represented here as integral curves of the vector fields Xσ,3, Xσ,4. The reason
why co-axial connections spread out in a fan while trans-axial connection are
more spatially focused is that the field Xσ,1 and Xσ,2 do not commute and
their commutator is linearly independent from them:

[Xσ,1, Xσ,2] = −Xσ,3,

while the vectors Xσ,3, Xσ,4 do not commute but their commutator linearly
depends on them:

[Xσ,3, Xσ,4] = −Xσ,3,

In Fig. 8.3 it can be seen that the integral curves of Xσ,1 and Xσ,1 are not
planar (top-left) while integral curves of the Xσ,3, Xσ,4 belong to the plane
spanned by themselves (top-right) and their projection is the red line only.

8.3 Natural image statistics

This section is devoted to the computation of the distribution of orientation
and scale in natural images lifted in the 4D space introduced in the previous
section.

8.3.1 Methodology

Each image I in the data base is lifted to a 4D space by means of a filter
bank of even symmetric kernels. The filter bank is indexed by the parameters
scale σ and orientation θ. The lifting maps each point (x, y) in the image to
a point (x, y, θ, σ) in R2×S1×R. The same procedure applied in Chapter 7
is applied here for the computation of the co-occurrence histogram, so we
refer to Section 7.3 for a detailed explanation. The natural image database is
the same that was used in the previous chapter. The only methodological
difference is that we consider even symmetric filters indexed by scale and
orientation. More precisely we used second derivative of Gaussian filters
ϕσ,θ(x, y):

ϕσ,θ(x, y) =
∂2Gσ

∂ỹ2
(x, y), (8.9)

where:
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• Gσ is the 2D gaussian function:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ;

• ỹ = −x sin θ + y cos θ so the orientation of the filter is θ;

• σ is the scale parameter.

Figure 8.4: Shown in the figure are some level sets of a second directional
derivative of gaussian kernel ϕσ,θ(x, y) (eq. 8.9, θ = π

2
). This is the mother

kernel from which is obtained the filter bank used in the construction of the
6D histogram.

Depicted in Fig. 8.4 is the kernel ϕσ,θ(x, y), for an arbitrary scale σ and
orientation θ = π

2
. Each kernel used for the detection is obtained by a scaling

and a rotation of ϕσ,θ. Note that ϕσ,θ = ϕσ,θ+π, as the function is even
symmetric. Then, the angle θ takes values in the interval [0, π) and not in
the whole circle.

There are 8 different orientations and 10 different scales considered here. The
sampling of the scale space is done in such a way that the scale grows one pixel
in each sample from 3 to 12 pixels. This means that the scale σ takes values
from the set {3px, 4px, . . . , 11px, 12px}. The orientations of the filters are
equidistributed in the interval from 0 to π: θ ∈ {0, π

8
, . . . 7π

8
}. The filters were

implemented with the steerable architecture [30] as in the previous chapter.
The threshold to the output of the filters was set empirically. We considered
at most a 16 pixels distance for the co-occurrence of edges. Each detected
point is represented by 4 magnitudes (x, y, θ, σ), the first 2 are the position in
pixels in the image, the third is its orientation and the last is its scale (which
in this framework is interpreted as the distance in pixels to a boundary).

The co-occurrence histogram is 6D (after imposing translation invariance in
the variables (x, y)). The coordinates are the relative position, as well as
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the orientation and scale of each point: (∆x,∆y, θc, θp, σc, σp). With these
parameters, the size of the 6d histogram is 33×33×8×8×10×10.

All the computations were implemented in C language. In the following
section we provide visualization of the histogram.

8.3.2 Results

Visualizing 6D data is at least a challenging problem. Probably, the easiest
way is to fix some of the parameters and visualize the resulting histogram.
Fig. 8.5 shows the first attempt. In there is visualized the 5D histogram
resulting from setting σc = 3px, its lowest possible value. Shown in the figure
is a stack of planes. Each plane corresponds to a different value of σp, then,
in each plane is visualized a 4D histogram corresponding to fixed values of σc
and σp. For space restrictions, only 6 values of σp are plotted. The value of
σp increases from the bottom to the top. The slices with constant σc and σp
are 4D histograms which are plotted as a grid of matrices, using the same
technique used in Fig. 7.10. In the grid the orientation of one of the edges
varies along columns, while the orientation of the other along rows. Each one
of the small panels inside the 4D histogram corresponds to a slice of the 6D
histogram with the four last parameters θc, θp, σc and σp fixed. It is hard
to extract conclusions from this image but it gives an intuition about the 6
parameters.

The stack of Fig. 8.5 is presented in Figure 8.6 with a different visualization.
Each panel correspond to a different value of σc and σp indicated on the top.
Within each of them, a 4D histogram is plot using the same visualization
technique as in Fig. 7.10 in the previous chapter.
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Figure 8.5: Visualization of the 5D histogram of co-occurrences for the case
in which σc (the scale of the reference edge) is constant and equal to 3 px. In
the stack of images, each plane correspond to a different value of σp. Then,
each plane contains a slice of the histogram for which σc and σp are constant
(a 4d histogram). For space restrictions, only the histograms corresponding
to the lowest 6 values of σ are plotted. In Fig. 8.6, each plane of the stack is
visualized individually.
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Figure 8.6: Visualization of the histogram of co-occurrences. Visualized in
each of the nine large panels is a section of the histogram where σc and σp
are constant. Across the large panels, the value of σc remains constant at
its lowest possible value. The value of σp increases first by rows and then by
columns.
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8.3.3 Interpretation

Let us first consider a slice of the histogram, for sigma fixed. Some of the
characteristic of this histogram are indeed similar to that one. Let us analyze
for example the one corresponding to σc = σp = 3px, shown on the left-top
corner of Fig. 8.6. These data correspond to the minimum scale, for both the
reference and the secondary edge. Theoretically we expect it to be similar to
the one visualized in Fig. 7.10. Indeed the integral curves of X1,σ + kX2,σ

(visualized on Fig. 8.3) for σ fixed, are the same as those of the rototranslation
model (see Fig. 4.7). Qualitatively, it can be observed that the histograms
are similar. The main difference is that the new one is π-periodic, while that
of the previous chapter was 2π-periodic. As a result, instead of 2 branches
there are 4, as in the data reported by [86] which we reproduce in Fig. 7.3.

Another characteristic observed in each of the 4D panels is invariance by
rotation. Within a panel one can empirically verify that each column is
approximatively equal to the next one up to a rotation and a shift on the
small panels. The same happens within the columns.

We can now focus on the behavior on the plane Xσ,3 Xσ,4. The vector Xσ,3

is perpendicular to the contours, while Xσ,4 is the direction of the scale axis.
For simplicity, in this analysis we set θc = θp = 0◦ and σc = 3px. Fig 8.7
illustrates this intersection and the actual plane is shown in Fig. 8.8.

One can observe the presence of two branch-like structures. The principal
(the strong one), is form by two straight branches starting from the origin.
This structure is coherent with the connectivity predicted by the symplectic
model, as it is along one of the integral curves of Xσ,3 + kXσ,4. Intuitively,
the reason for the existence of this structure is well explained by the central
column of drawings in Fig. 8.1. If a kernel responds maximally to one edge
at a certain scale, the same edge is going to be detected by filters parallel to
the first one and centered along the direction perpendicular to the axis of
the filter. There is also a weaker structure at a lower angles which does not
come out from the origin. This structure is not predicted by the model and
we think it may be due to the violation of the constant piecewise hypothesis
which is implicit in our interpretation of the scale feature.

Summarizing, we conjecture that the stronger branch-type structure is due to
the distance to the boundary in piecewise constant images, while the second
structure could be due to the presence of lines and textures in natural images.
In Section 8.3.4 a simple experiment to check this last conjecture is proposed.
Taking into account that in the model we considered only piecewise constant
images (cartoon), the model is only able to predict the first structure.
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Figure 8.7: The intersection of the histogram with the plane {Xσ,3, Xσ,4}
(plotted in gray). For simplicity, we set θc = θp = 0◦ and σc = 3px. Then,
each plane of the stack is that on the left-top corner of each big panel in Fig
8.6.

Figure 8.8: The intersection of the histogram with the plane {Xσ,3, Xσ,4}.
On the upper figure the color is proportional to the probability while at the
bottom some level curves are visualized.
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We can model the main structure with a propagation in the direction of the
integral curve of the structure on the Xσ,3 Xσ,4 plane. The corresponding
equation is a pure advection of the two directions Xσ,3−Xσ,4 and Xσ,3 +Xσ,4

which leads to the wave operator (the equation comes trivially because of the
conjugate product):

(Xσ,33)2 − (Xσ,44)2 = 0. (8.10)

where Xσ,33 = Xσ,3(Xσ,3) and Xσ,44 = Xσ,4(Xσ,4).

The solution to (8.10) was simulated using COMSOL and visualized in Fig.
8.9.

Note we did not have any spreading in the histogram, as predicted by the
model, due to the linear dependence of the commutator [Xσ,3, Xσ,4] from the
vectors Xσ,3, Xσ,4. When modelling the trans-axial connectivity, (8.10) is the
analogue of the Fokker-Planck operator we used for modelling the co-axial
connectivity in the past chapters.

Figure 8.9: The solution of eq. (8.10) which models the structure at 45◦

shown in Fig. 8.8. This density was computed using COMSOL.

8.3.4 Cartoon Database

In order to support our conjecture we tested the methodology on a database
of randomly generated cartoon images. The scope of this simple experiment is
to prove the absence of the secondary structure seen in the previous histogram.
In this way, we verified that this structure was due to the presence of lines,
textures or light gradients in the natural images. These artifacts were not
considered in the symplectic model. Nevertheless, one may argue that the
secondary structure may be due to some other reason, for example the bank
of filters that was selected. If this other conjecture is true, then the same
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Figure 8.10: Examples of the randomly generated database of cartoon images.
The images are large 1536×1024

structure should appear when the histograms are computed on the piece-wise
constant database.

Some examples of synthetic images are presented in Fig. 8.10.

The parameters used in the computation of the co-occurrence histograms are
the same as in the previous section. The histograms were computed using 100
randomly generated images of size 1536px×1024px. A part of the resulting
histogram is visualized in Fig. 8.11, while the plane {Xσ,3, Xσ,4} is depicted
in Fig. 8.12. Analyzing this last figure, one can check that the additional
structure is no longer present, proving our conjecture.

This experiment proves that the structure of the histogram strongly depends
on the set of images, and it is not dependent on the specific choice of the
type of filters.
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Figure 8.11: The histogram computed on the database of 100 random cartoon
images. This figure is analogue to Fig. 8.6. The values of σc and σp are
indicated in the top of each panel.

Figure 8.12: Visualization of the plane {Xσ,3, Xσ,4} of the histogram computed
in the cartoon database. The secondary structure observed in Fig. 8.8 almost
disappeared.

8.4 Discussion

This chapter begins by reviewing a model of the cortex introduced in [84]
which takes into account the scale as an engrafted variable in addition to
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the orientation. The model is an extension of the SE(2) model of the cortex
used in the previous chapters. Now the group considered is the affine group,
endowed with a symplectic structure which models two types of cortical
connections, co-axial and trans-axial. The first structure is the same already
described in the past chapters, so we focused in the second one.

It is important to outline that the construction of the cortical inspired space,
specially of the geometrical structures therein, is analogue to that presented
in Chapter 4. Firstly, a group of symmetries is chosen and identified with
an appropriate fiber bundle. The coordinates of the cortical space are the
parameters of the receptive profiles of the cells which takes into account the
considered features. Equivalently, each coordinate may be intended as the
element of the group operation which if applied to a mother kernel generates
each receptive profile. The differential structure comes out by considering the
kernel of a differential form which approximates the receptive profile. This
same methodology may be extended to take into consideration other features.

The main contribution of this chapter is adding another source of experimental
data, the statistic of natural images. This was achieved by extending the
method presented in Chapter 7 so the scale can be taken into account. In
that chapter, prove was given that the connectivity patterns present in the
SE(2) model (the fun of integral curves of the vector field X1 + kX2 and the
Fokker-Planck’s fundamental solution) were in accordance with the statistic
of co-occurrences of oriented contours. In this chapter, we checked that the
geometrical structure predicted by the symplectic model for modelling the
trans-axial connections is encoded in a 6d histogram, which results from
computing the statistics of co-occurrences of edges (which are considered with
their orientation and scale). The main difference between the co-axial and the
trans-axial models of connectivity is that second structure does not spread
out. By spreading we intend the brush like shape of the association fields.
We propose to model the propagation along the trans-axial field as the pure
advection process 8.10. The trans-axial direction (indicated in this thesis
by X3), if projected to the retinal plane, is perpendicular to the contours.
The mechanism of perceptual completion in this direction is called filling-in.
Unlike the perceptual completion of contours in which the process is very well
understood from both the neurophysiological and psychophysical point of view,
the processes underlying the filling-in are not yet clear [72]. There is still much
work to do in this area and the we think that the methodologies presented
in this chapter are at least promising. However, still more physiological and
phenomenological mechanisms need to be understood.

Finally, some considerations can be done on the scale feature. In the framework
of the symplectic model, the scale is interpreted as the distance from a
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contour. From a signal point of view a contour is a discontinuity. This
interpretation only has a sense if the image is piecewise constant. Such an
hypothesis may seem too restrictive, as natural images are clearly much more
complex. However, piecewise constant functions are the output of an image
segmentation [63, 60] which is the base of human perception according to
Gestalt psychologists [46]. The input for the experiments are natural images
which do not verify the cartoon model. This why we hypothesize that the
secondary structure observed in Fig. 8.8 is due to the presence of texture. In
order to confirm this, we computed the statistic on a database of synthetic
cartoon type images and verified that the secondary structure practically
disappeared.
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Chapter 9

Ladder

9.1 Introduction

In Chapter 2 devoted to phenomenology, a recent psychophysical experiment
of May and Hess [57] is reviewed. In there, the authors carefully compare
the saliency of two perceptual structures: the snake and the ladder. In the
snake configuration, Gabor patches are arranged tangentially to a path and
the experiment tests a combination of the Gestalt laws of good continuation
and proximity. In the ladder configuration the patches are orthogonal to
the path and the Gestalt law of parallelism and proximity are tested. The
targets are immersed in a background of identically shaped but randomly
distributed elements. The two-alternative force choice method (2AFC) was
used, in which an observer should indicate which one of two stimuli presented
in a trial contains a target, with the target presented in only one of the two
stimuli.

Previous works demonstrated that ladders are usually harder to identify than
snakes [29, 37, 8, 52, 56], but [57] was the first work to test this systematically
for different parameters. They reported data in agreement with previous
works for the snake configuration and a surprising new characteristic of the
ladder association field: the saliency of ladders is independent from the
separation of elements in a wide range of the visual field. We will show that
this result is in agreement with the sympletic geometrical model of the cortex
introduced in Chapter 8 and with the statistics of natural images.

The chapter is organized as follows. We start by re-analyzing the data
provided in [57] which is interpreted as a measurement of the association
fields for snakes and ladders, and comparing the results with the integral
curves of the symplectic model projected on the image plane. In section 9.2 we
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use the framework developed in Chapter 7 for estimating a new distribution of
co-occurrence of edge probabilities. We want to test the occurrence of parallel
edges, so this analysis could have been done on the same histograms computed
in Chapter 7, and the conclusions would have been similar. However, since it
provides a slight improvement, we decided not to take into account polarity
of edges. We show that this estimated probability distribution is compatible
with the psychophysical experiment and with the symplectic model.

9.2 Psychophysical data

In this section we provide reinterpretation of the data from [57], already
presented in Chapter 2. The authors reported the percentage of correct
responses of two subjects for each combination of parameters as supplementary
material. The separation between elements s (measured in degrees of the
visual field) took values in {1.09◦, 1.54◦, 2.18◦, 3.08◦}, the carrier wavelength
cw (same units) took values between {0.193◦, 0.273◦, 0.385◦, 0.545◦} and the
angle α took values between {0◦, 10◦, 30◦, 40◦}.

This work is focused only in the separation s and the angle difference α
between Gabor elements. Therefore we decided to average the proportion
of correct responses between all possible carrier wavelengths. This means
that each trial with the same value of separation, angle path and type of
stimulus, was considered a realization of the same experiment. We also take
the average values between the two subjects. Even though, since we are only
interested in qualitative interpretation, the average is not really important.
Indeed, the considerations we will provide are also valid for one subject or a
single wavelength.

Once the simple dimensionality reduction explained in the previous paragraph
has been applied, our data is a function of two parameters s and α and
takes values between 0 and 1, the percentage of correct responses to the
2AFC experiment. A value of 1 implies that all the responses are correct and
therefore the target is always detected. A value near 0.5 is equivalent to a
completely random choice and the target can not be distinguished from the
background.

The parameters s and α completely define the relative position between
elements. We performed a simple change of variables in order to use a local
polar coordinate system with respect to the position and orientation of one
of the patches (see Fig. 9.1). The coordinate change is then defined as:
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(r, θ) =

{ (
s, α

2

)
for the snake(

s, π−α
2

)
for the ladder

. (9.1)

Α

s

Α

s

Θ=Α�2

r=s Θ=HΠ-ΑL�2

Figure 9.1: In blue it is shown the snake configuration and in red the ladder.
The data reported in [57] are in the coordinates (s, α) indicated in the upper
figures. We will consider the relative positions between elements in the
polar coordinates (r, θ) defined as in eq. (9.1). This lets us represent both
configurations on the same axes as shown within the bottom panel.

Fig. 9.2 presents the data after performing the collapse on the carrier
wavelength parameter. The blue and red plots correspond to the snake and
ladder configurations respectively. Show on the top row are the percentages
of correct detections of the target as the separation between elements changes.
Each single curve corresponds to a different value of α. The value of α for
each plot is indicated on the left-bottom panel in the coordinates system (r, θ)
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defined in (9.1). Plotted on the last panel is the averaged data for all possible
angle differences.
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Figure 9.2: Reinterpretation of results reported by May and Hess [57]. The
blue plots correspond to the snake configuration while the red plots to the
ladder. The top row of panels shows the percentage of correct responses as
the separation s grows, each of the five line plots corresponds to a different
value of angle α (if α is constant all the Gabor patches must be tangent to
the same arc of circumference). The respective angles are indicated in the
left-bottom panel using the polar coordinates (9.1). The points correspond
to relative positions between the patches. Plotted in the bottom right panel
are the averages for both the ladder and snake detection performance.

Analyzing the graphics one can check May and Hess observations (see Section
2.5). From Fig. 9.2 we can infer that the subject’s performance:
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• decays as the angle difference grows;

• is better at detecting snakes than at detecting ladders;

• decays detecting snakes when the separation between elements grows;

• detecting ladders is almost independent from the distance between the
elements.

An important property of the change of coordinates (9.1) is that we are able
to plot the snake and the ladders data on the same polar axes. Indeed, in the
space (r, θ) the output of the psychophysical experiment is a two dimensional
function. In Fig. 9.3 (left) we used a color scheme to visualize it. The relative
positions and orientations with respect to the central patch are indicated.
The wavelength of the color is proportional to the amount of correct responses.
The colors have been interpolated between the discrete data obtained from
[57]. One can observe some differences between the areas corresponding to the
snake and to the ladder. In the snake part of the image, one can see how the
color spreads from the center approximately into the directions indicated by
the orientations of the patches. On the other hand, in the ladder configuration
the color is propagated radially without spreading. The significant perceptual
structure is the parallel configuration, a small variation from this configuration
strongly affects the ability to detect it.

Figure 9.3: Reinterpretation of results reported by May and Hess [57].

In Fig. 9.3 (right) another visualization technique is used. The segments
are centered at the points (r, θ) of the experiment. The orientation of the
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segments is the relative orientation between two patches α. The length of the
segments is proportional to the saliency of the configuration.

The behaviors of these association fields strongly agree with those of the
integral curves of the symplectic model when projected onto the image plane
(see Fig. 8.3). In the co-axial configuration, the fan of integral curves
spreads as it happens with the saliency of the snakes (see Fig. 9.3). On the
contrary, the trans-axial integral curves remains confined to a single curve and
there is no spreading. A similar effect can be observed with the saliency of
ladders. When the angle varies from the parallel configuration, the perception
drastically decays. The agreement between the trans-axial integral curves and
the experiment of May and Hess is even stronger. In the configuration, the
separation between elements does not affect the saliency. In the model, this
is interpreted by the fact that the respective integral curves do not spread.

9.3 Image Statistics

9.3.1 Computation of the image statistics

This section is devoted to the computation and analysis of the distribution
of co-axial and parallel contours in natural images. The methodology for
computing the histogram is the same as the one used in Chapter 7.

The probability of co-occurrence of edges is estimated by means of a co-
occurrence histogram whose coordinates are the relative position and orien-
tation of significant edges. The procedure for constructing the histogram,
and the natural database are identical to that described in Chapter 7 (see
Section 7.3). In this instance we do not take into account the polarity of
contours. Therefore, the only methodological difference is that we used a
local edge energy E(θ) instead of the odd symmetric filter G(θ) (eq 7.1). The
edge energy combines the output of the odd symmetric filter G(θ) with that
of an even symmetric filter H(θ):

E(θ) = G2(θ) +H2(θ).

The angle θ is the orientation of the axis of the filter and it is discretized in
16 different orientations between 0 and π. As before, the kernels are steerable
[30] and the parameters are the same as those reported in [86]. We considered
for the co-occurrence edges a maximum distance of 64 pixels.

With these parameters, the dimension of the 4D histogram is 129×129×64×64.
This histogram is visualized in Fig. 9.4.
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Figure 9.4: The 4D histogram computed with the edge energy (visualized
with the same technique as in Fig. 7.10). Each panel corresponds to a
different configuration of the two edges. The co-linear configuration is in
the diagonal. The orientation of the central edge changes across the rows
while the orientation of the relative edge changes across the columns. Each
histogram is equalized singularly so that the full range of the colormap is
exploited.
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In our implementation, we have set the variance of the DoG filter to σ = 1
and chosen a support of 7 pixels as reported in [86]. The orientations were
discretized at 16 different values between 0 and π.

9.3.2 Analysis

In this section we provide comparison between the psychophysical and sta-
tistical data of saliency. The results can be analyzed in Fig. 9.5. Shown
in the upper panels is the resulting histogram for two edges with the same
orientation (left) and some of its level curves (right). Let us first note that
two different structures are clearly visible. An elongated co-axial correlation
is present with high probability. This is due to points belonging to the same
contour, in Chapter 7 this structure was extensively analyzed. A second
isotropic structure characterizes the behavior of parallel covariances at low
probability values.

The bottom panels of Fig. 9.5 show the plotting of the histogram values along
the co-axial direction (blue plot) and trans-axial direction (red plot). The
two lines are indicated in the histogram with their respective colors. The
panel on the right is a zoom of the panel on the left, in the area indicated
by the dashed rectangle. This graph should be compared with Fig. 9.2
(bottom-right panel), as the same properties are observed. The probability of
the co-axial configuration is stronger than that of the trans-axial one. When
the separation grows, the co-axial probability decays while the trans-axial
probability remains approximately constant. Identical considerations to those
realized in the previous section can be done in order to compare the statistical
data with the symplectic model.
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Figure 9.5: Visualization of the histogram: color density plot (upper-left)
and level lines (upper right). The value of the histogram along the blue
lines (co-axial) and red lines (trans-axial) are plotted in the bottom panels.
The right panel corresponds to a zoom image of the area inside the dashed
rectangle drawn above the left panel.
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9.3.3 Discussion

This section has been inspired from the psychophysical results of the ex-
periment presented by [57]. In there, the human performance in detecting
contours and ladders was tested and systematically measured. One of the
conclusions of the authors of the experiment was the following (page 19 of
[57]):

“increasing the separation between the elements had a disruptive
effect on the detection of snakes but had no effect on ladders,
so that as separation increased, performance on the two types
converged”

The human ability to detect snakes is closely correlated with the perceptual
process underlying integration and grouping of contour. This aspect has
been faced with mathematical models of the functional architecture of V1 in
Chapter 4 and with the statistics of natural images in Chapter 7. On the
other hand, the grouping of oriented perceptual units parallel between them
(ladder) is less understood. The reviewed psychophysical experiment proved
that, within certain limits, the distance between the elements does not affect
integration. This distance is measured along the direction perpendicular to
the orientation of the patch, the trans-axial direction indicated by the vector
X3. This behavior can be explained in terms of the mathematical model of
trans-axial connectivity introduced in the previous chapter. In fact integral
curves in the direction X3 do not spread out and remain confined to the axes
perpendicular to the contour. This feature can explain why the salience of
ladders is not spread and it is conserved (Fig. 9.3). Not only the perception
of the ladders is weaker than the perception of snakes, it is independent from
the distance between the patches, and approximately confined to the direction
X3. Something similar occurs with the statistics of natural images. First, the
co-occurrence of parallel contours is weaker than the co-occurrence of the co-
linear ones. However, it is statistically significant. Second, the probability of
co-occurrence of this configuration does not depend on the distance between
the contours. We can conclude that also for the feature of ladder there is
good agreement between psychophysical measurement, statistics of natural
images and Lie group based mathematical model.



Chapter 10

Conclusions

The aim of this thesis is to integrate three different scientific areas related
to low level vision: phenomenology of perception, visual neurosciences and
statistics of natural images. It is shown how the morphologies emerging in
these three fields are very correlated one to the other and can be formalized
using an unified, powerful mathematical setting, the theory of Lie groups. In
the classical approach of naturalization of phenomenology of vision (Petitot
and Citti-Sarti) the experimental heritage of phenomenology of perception
has been reconsidered at the light of new discoveries of neurophysiology and
modelled with suitable mathematical instruments.

The main contribution of this thesis has been to add a new empirical domain,
namely the statistics of natural images and to integrate it with the phe-
nomenological and neurophysiological data. The thesis proved the existence
of strong isomorphisms between the morphologies observed in the different
fields.

Suitable techniques to compute edge co-occurrences histograms in a large
database of natural images have been proposed and discussed. In particular,
great evidence has been produced that resulting data were in good agreement
with the geometrical model of the cortex in SE(2) and with the psychophysical
data.

It has been observed that the natural mathematical instrument to model
image statistics was a stochastic framework in Lie groups. These instruments
have been adopted with success also to model non deterministic association
fields and propagation of contours, showing how the methodologies set up in
one domain, resulted well suitable for modelling in other domains.

The methods have been fully developed within the SE(2) group, because
of the large literature already present in this specific case. But the thesis

167



168 CHAPTER 10. CONCLUSIONS

was not limited to this case and the approach introduced has been extended
to the affine group. This group was recently used to model the functional
architecture of the visual cortex taking into account the orientation and scale
features. In the present study we have shown that recent psychophysical
experiments fits very well with statistics of natural images in the affine group
and both morphologies are well modelled by Lie group theory.

A discussion has been provided about which geometrical structure is encoded
by the visual cortex. Three candidates were in order:

1. A section of the fiber bundle, encoding an orientation vector field as a
function of the position in the retinal plane;

2. A second order tensor field as a function of the position encoding more
information about orientation distributions;

3. A distribution of probability defined on the full fiber bundle as a
function of the of position and orientation θ and corresponding to a
infinite dimensional tensor field on the retinal plane.

Even if there is not a unique answer to the problem of geometrical encoding
we have stressed the evidence that statistical distributions of co-occurrences
naturally live in the full Lie group structure and that this is a much richer
structure that the vectorial or the tensorial one.

Anyway this thesis leaves more open questions than answers:

• how these methods perform in processing of real images;

• how the physics of real neurons can be introduced in the Lie based
theoretical framework;

• how the methods perform in higher dimensionality Lie groups dealing
with other low level visual features;

• how the problem of binding and global figural emergence can take
advantage from these architectures.

We hope that this is just the beginning of a fruitful field of new researches.
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