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INVARIANT MEASURES FOR TYPICAL
CONTINUOUS MAPS ON MANIFOLDS

ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

Abstract. We study the invariant measures of typical C0 maps
on compact connected manifolds with or without boundary, and
also of typical homeomorphisms. We prove that the weak∗ closure
of the set of ergodic measures coincides with the weak∗ closure of
the set of measures supported on periodic orbits and also coincides
with the set of pseudo-physical measures. Furthermore, we show
that this set has empty interior in the set of invariant measures.

1. Introduction

In this article we study the structure of the invariant measures for
typical continuous maps of a C1 compact, connected manifold M of
finite dimension m ≥ 1, with or without boundary. This generalizes
the work in our previous article [CT] where we studied the case when M
is an interval. The study of the invariant measures for typical maps was
initiated recently by Abdenur and Andersson [AA]. Previously studies
of the dynamics of typical maps have concentrated on the topological
properties; see [AHK, AP, H1, H2, KMOP, O, OU, PP, Y] and the
references therein.

Let Ef denote the set of ergodic, f -invariant Borel probability mea-
sures, Perf the set of invariant measures supported on a single periodic
orbit, and Of denote the set of pseudo-physical measures for f , (see
subsection 2.1 for the definition). We always have Perf ⊂ Ef . Let C(M)
denote the set of continuous maps of M to itself and H(M) denote the
set of homeomorphisms of M to itself. We endow these spaces with the
C0 topology and say that a family of maps in C(M) (resp. in H(M)) is
typical if it contains a countable intersection of open and dense family.
Our main result is the following theorem:
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Theorem 1. If f is typical in C(M) (resp. H(M)), then

Ef = Perf = Of .

The following questions arise from Theorem 1. Are all the invariant
measures in the closure of the ergodic measures? Are all the invariant
measures pseudo-physical? We prove that the answer is negative for
C0-typical maps:

Theorem 2. If f is typical in C(M) or if f is typical in H(M), then
the set Of has empty interior in the set of all f -invariant measures.

In particular an open and dense set of f -invariant measures is not in
the closure of the ergodic measures. Theorem 2 implies that the typical
behaviour of homeomorphisms on manifolds widely differ from the typ-
ical behaviour of C1 diffeomorphisms. In fact, Gelfert and Kwietniak
proved that for C1-typical diffeomorphisms the set of ergodic measures
is dense in the space of invariant measures [GK, Theorem 8.1].

The proof of Theorem 1 is split into several pieces; its main compo-
nents are Theorems 10, 20, 21 and Corollary 15. The main components
of the proof of Theorem 2 are Theorems 5 and 12, Proposition 8, and
Lemma 13.

The article is organized as follows. In Section 2 we give some back-
ground material and prove a technical lemma on the approximation of
measures. In Section 3 we define the notion of shrinking sets, and we
prove an extension of a result of Abdenur and Andersson, as well as
some consequences of this result. We prove Theorem 2 in Section 4.
Finally, Sections 5 and 6 are dedicated to the proof of Theorem 1.

2. The set-up

Let M be a compact, connected, C1 manifold of finite dimension
m ≥ 1, with or without boundary. Once a Riemannian structure is
chosen on M , it defines a volume measure which we will refer to as the
Lebesgue measure. It also defines a distance, dist(·, ·), between points.
We denote the C0 distance on C(M) by

ρ(f, g) := max
x∈M

dist(f(x), g(x)),

This metric makes the set C(M) a complete metric space and generates
the C0 topology on C(M). Similarly, H(M) is a complete metric space
with the C0 topology generated by the distance

ρH := max{ρ(f, g), ρ(f−1, g−1)}.
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The results of Theorems 1 and 2 hold independently of the choice
of the Remannian structure on M . In fact, the topological and Borel-
measurable properties of the system depend on the metrizable topology
of the manifold M , but not on the particular choice of its metric dist.
The properties related to the pseudo-physical measures depend only
on the set of pseudo-physical measures inside the space of all the Borel
invariant measures. But this set is preserved if we substitute the previ-
ously chosen Lebesgue measure by any finite Borel measure equivalent
to it (see Definition 3). Hence, the results remain unchanged if we
change the choice of the volume form.

2.1. Pseudo-physical measures. For any point x ∈ M and f ∈
C(M), let pω(x) be the set of the Borel probability measures on M that
are the limits in the weak∗ topology of the convergent subsequences of
the sequence

{

1

n

n−1
∑

j=0

δfjx

}

n∈N

where δy is the Dirac probability measure supported in y ∈M .
A measure µ is called physical if the set of those x ∈ M for which

pω(x) = µ has positive Lebesgue measure. Note that we do not require
physical measures to be ergodic.

In this article we consider a generalization of the above definition, in-
troduced in [CE1] and studied in the C1 case in [CE2], [CCE1], [CCE2].
We fix a distance, d(·, ·), in the space of probability measures that en-
dows the weak∗ topology. It is easy to check that the following defini-
tion does not depend on the choice of this distance (see [CE1]).

Definition 3. A probability measure µ is called pseudo-physical if for
all ε > 0 the set Aε(µ) := {x ∈ M : d(pω(x), µ) < ε} has positive
Lebesgue measure. We denote by Of the set of pseudo-physical mea-
sures for f .

Note that Of is always closed and non-empty, and that any pseudo-
physical measure is automatically f -invariant, and we do not require a
pseudo-physical measure to be ergodic. (In [CE1, CE2, CCE1] pseudo-
physical measures were called SRB-like.)

2.2. The simplexes. We consider an atlas {(Uα, φα)} of the manifold
M , where Uα are open sets whose union covers M , and φα : Uα 7→ R

m

are C1 diffeomorphisms.
An Euclidean k-simplex (0 ≤ k ≤ m) is the convex hull of a finite

set {x0, x1, . . . , xk} ⊂ Rm such that {xj − x0 : 1 ≤ j ≤ k} are linearly
independent.
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A k-simplex of M is a nonempty compact set T̄ contained in a chart
(Uα, φα) such that φα(T̄ ) is an Eucliean k-simplex of Rm. Throughout
the article T will denote the nonempty interior of an m-simplex T .
M is triangulable if there exits a finite family {T̄1, . . . , T̄ℓ} of m-

simplexes (called a triangulation) such that Ti ∩ Tj = ∅ if i 6= j and
∪iT̄i =M .

It is well known that any compact C1 manifold is triangulable [W],[M].
For any ε > 0 there exists a triangulation of M such that the diameters
of all the simplexes T̄i are smaller than ε. To prove this it suffices to
notice that an Euclidean m-simplex can be decomposed into a finite
number of m-simplexes of arbitrarily small diameter.

Consider a triangulation T := Tm := {T̄m
1 , . . . , T̄

m
hm

} of M . Define
∂T to be the union of the topological boundaries ∂T̄ of the simplexes
T̄ of T .

Consider an m-simplex T̄ of M and its associated chart (Uα, φα).
Let c be a point in the interior of T̄ , which we will call “centroid”. Let
{x0, x1, . . . , xm} ⊂ Rm be the vertices of φα(T̄ ). Up to translation of the
coordinates, it is not restrictive to assume that φα(c) of φα(T̄ ) is located
at the origin. Suppose λ > 0 is not too large. We denote λT̄ ⊂ Uα

the new simplex such that φα(λT̄ ) is the Euclidean m-simplex with
vertices {λx0, λx1, . . . , λxm} ⊂ φα(Ūα). Clearly, there exists a λ0 > 1
(depending on T̄ and the chosen centroid c) such that λT̄ is well defined
for all λ ∈ (0, λ0).

Figure 1. The simplex T̄ is drawn with a solid line,
while the simplex λT̄ for a λ = 1/2 is drawn with a
dotted line. The solid dot is the chosen centroid of the
triangle located at the point c ∈ T = int(T̄ ) ⊂ Uα.

2.3. A technical lemma. In the metrizable space of probability mea-
sures endowed with the weak∗ topology, consider the following distance
between probabilities µ, ν:

d(µ, ν) :=
∞
∑

i=1

1

2i

∣

∣

∣

∣

∫

Ψi dµ−

∫

Ψi dν

∣

∣

∣

∣

,

where {Ψi}
∞
i=1 is a countable dense family in the space C0(M, [0, 1]).

We will use the following lemma on the approximation of measures.
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Lemma 4. For any ε > 0, there exists q ≥ 1 such that, if µ and ν are
probability measures of M satisfying supp(ν) ∪ supp(µ) ⊂ ∪m

j=1Ij for
some pairwise disjoint connected closed sets, if diam(Ij) ≤ 1/q, and if
|ν(Ij)− µ(Ij)| ≤ 1/qm for each j, then d(µ, ν) < ε.

Proof. Fix n ≥ 1 such that
∑+∞

i=n+1 2
−i < ε/2. Then, for any pair of

probability measures µ, ν we obtain

(1) d(µ, ν) <
ε

2
+

n
∑

i=1

1

2i

∣

∣

∣

∣

∫

M

Ψi dµ−

∫

M

Ψi dν

∣

∣

∣

∣

.

The uniform continuity of the finite family of functions {Ψi}1≤i≤n,
implies that there exists δ > 0 such that, if dist(x1, x2) < δ, then
dist(Ψi(x1),Ψi(x2)) < ε/4 for all 1 ≤ i ≤ n. Fix q ∈ N+ such that
1/q < min(δ, ε/4).

The mean value theorem for integrals, yields for all 1 ≤ i ≤ n
∫

⋃m
j=1 Ij

Ψi dµ =

m
∑

j=1

∫

Ij

Ψi dµ =

m
∑

j=1

Ψi(xj)µ(Ij) for some xj ∈ Ij,

∫

⋃m
j=1 Ij

Ψi dν =
m
∑

j=1

∫

Ij

Ψi dν =
m
∑

j=1

Ψi(x
′
j)ν(Ij) for some x′j ∈ Ij .

From this we deduce
∫

⋃m
j=1 Ij

Ψi dµ−

∫

⋃m
j=1 Ij

Ψi dν =
m
∑

j=1

(

Ψi(xj)µ(Ij)−Ψi(x
′
j)ν(Ij)

)

=

m
∑

j=1

(

Ψi(xj)(µ(Ij)− ν(Ij)) + (Ψi(xj)−Ψi(x
′
j))ν(Ij)

)

.

Since |ν(Ij)− µ(Ij)| ≤ 1/qm for each j, we conclude
∣

∣

∣

∣

∫

M

Ψi dµ−

∫

M

Ψi dν

∣

∣

∣

∣

≤
m
∑

j=1

1

qm
+
ε

4

m
∑

j=1

ν(Ij) < ε/2 ∀ 1 ≤ i ≤ n.

Substituting this inequality in (1), finishes the proof of Lemma 4. �

3. Shrinking sets

A periodic shrinking set of period p ≥ 1, is a nonempty open set I
whose closure Ī is an m-simplex, such that {f j(Ī)}0≤j≤p−1 is a family
of pairwise disjoint sets, f p(Ī) ⊂ I, and diam(f j(I)) < diam(I) for all
1 ≤ j ≤ p− 1.

An nonempty open set J , whose closure J̄ is an m-simplex, is even-
tually periodic shrinking, if there exists a periodic shrinking set I and
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a transience time n ∈ N+ such that fn(J) ⊂ I, and diam(f j(J)) <
diam(J) for all 1 ≤ j ≤ n− 1.

Note that the same periodic or eventually periodic shrinking set for
some f ∈ C(M) (resp. H(M)) is also a periodic or eventually periodic
shrinking set for all g in a small neighborhood of f in C(M) (resp.
H(M)).

If I is a periodic or eventually periodic shrinking set with period p,
then, by the Brouwer fixed point theorem, the map f p has a fixed point
x0 ∈ I; hence, the point x0 is periodic for f with period p.

Theorem 5. For a typical map f ∈ C(M) (resp. f ∈ H(M)), Lebesgue
a.e. point x ∈M belongs to a sequence {Iq}q∈N+ of eventually periodic
shrinking sets Iq such that diam(Iq) < 1/q.

Proof. For given natural numbers q, k ∈ N+, denote by Sq,k the set of
maps in C(M) (resp. H(M)), for which there exists a finite family of
nonempty open sets, which we denote by {I1, . . . , Il}, such that:
(i) diam(Ii) < 1/q for i = 1, 2, . . . , l,
(ii) Ii is a periodic or eventually periodic shrinking set,

(iii) Leb(M \
⋃l

i=1 Ii) < 1/k.
The set Sq,k is open in C(M) (resp. H(M)) since, for each f ∈ Sq,k,

the same family of such shrinking sets of f , is also a family of shrink-
ing sets satisfying conditions (i), (ii), (iii) for any other map g in a
sufficiently small neighborhood of f .

Now, let us prove that Sq,k is dense in C(M) (resp. H(M)). This will
complete the proof of Theorem 5, since the set

S :=
⋂

q≥1

⋂

k≥1

Sq,k

is a dense Gδ-set, and by construction of Sq,k, any map in S satisfies
the conclusion of the Theorem.

To prove the denseness of Sq,k fix any map f ∈ C(M) (resp. H(M)).
For any ε > 0, we will construct a perturbation g ∈ Sq,k such that
ρ(f, g) < ε (resp. ρH < ε).

Choose 0 < δ < min{ε, 1/q} such that

dist(x, y) < δ ⇒ dist(f(x), f(y)) <
ε

3
,

and if besides f ∈ H(M), then also dist(f−1(x), f−1(y)) < ε
3
. Consider

a triangulation T := {T 1, . . . , T l} of M such that the diameters of
all the simplexes T i are smaller than δ. For each i we would like to
choose a point xi ∈ Ti = int(T̄i) such that f(xi) ∈ Tj(i) = int(T̄j(i))
for some j which depends on xi. If f is an homeomorphism the set of
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points in Ti whose image is not in ∂T is a non-empty open set, and so
we can choose such points xi. If f is merely continuous it is possible
that such points do not exist. Then, we perturb f to a continuous
map f1 ∈ C(M) satisfying this property such that ρ(f, f1) < ε/12 and
such that dist(x, y) < δ ⇒ dist(f1(x), f1(y)) < ε/2. For the sake of
consistency of notation, if f ∈ H(M) or if f ∈ C(M) already satisfied
this requirement we set f1 := f .

Now we define “spherical coordinates” on each T̄i. To do this consider
a chart (Uα, φα) such that T̄i ⊂ Uα. Consider Si := φα(T̄i). Up to
a translation of the coordinates, it is not restrictive to assume that
0 = φα(xi). Recall that x ∈ Ti = int(T i); hence 0 ∈ int(Si). Therefore,
there exists a small solid m-dimensional ball B(0, r0) lying inside Si,
and the spherical coordinate system (r, θ) : r ∈ [0, r0], θ ∈ Sm in it.
Using the convexity of Si we can extend this coordinate system to all
of Si by defining R(θ) to be the supremum of all r such that the ray
in the direction θ lies inside Si up to the distance r. For simplicity of
notation, we normalize the r coordinate, by setting s := r/R(θ), thus
s ∈ [0, 1] for all θ. Finally we pull back these coordinates to T̄i via the
map φ−1

α . For any i and any s0 ∈ (0, 1] we will denote

Bi
S := {(s, θ) ∈ T̄i : s ∈ [0, s0]}.

We consider an integer number n ≥ 1 to be specified later. We
define an homeomorphism h of M as follows. h : T̄i 7→ T̄i is given by
by setting

h(s, θ) := (sn, θ).

Note that the map h is uniquely defined on ∂T , because for all i the
definition of h on ∂T̄i yields the identity map. Furthermore, note that
since h and h−1 map each simplex T̄i to itself, and the diameters of the
T̄i are at most δ we have

dist(x, h(x)) ≤ δ and dist(x, h−1(x)) ≤ δ.

The map g is then defined by

g = f1 ◦ h.

We claim that, for an adequate choice of n, the map g has the desired
properties, i.e., g ∈ Sq,k and ρ(g, f) < ε (and ρ(g−1, f−1) < ε in the
homeomorphism case).

Consider y ∈M . Since dist(h(y), y) < δ we have

dist(g(y), f1(y)) = dist(f1(h(y)), f1(y)) <
ε

2
and thus

ρ(f, g) < ρ(f, f1) + ρ(f1, g) < ε.
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In the case that f = f1 ∈ H(M), we have g−1 = h−1 ◦ f−1
1 . Consider

y ∈ M , let z = f−1(y) = f−1
1 (y) , then

dist(g−1(y), f−1(y)) = dist(g−1(y), f−1
1 (y)) = dist(h−1(z), z) ≤ δ < ε

and thus

ρ(g−1, f−1) < ε.

Now, to end the proof of Theorem 5, it is enough to choose n such
that the map g above constructed belongs to Sq,k.

Choose xi as the centroid of Ti, choose λ1 ∈ (0, 1) close to 1, and
λ2 ∈ (0, λ1) close to 0, and construct the simplexes λ2T̄i ⊂ λ1T̄i ⊂ Ti =
int(T̄i) whose interiors contain xi. If λ1 is close enough 1, we have:

(2) Leb
(

M \ (∪iλ1T̄i)
)

< 1/k.

Besides, if λ1 ∈ (0, 1) is close enough 1, then f1(xi) ∈ int(λ1T̄j(i)). So,
if λ2 ∈ (0, λ1) is small enough, we have f(xi) ∈ f1(λ2T̄i) ⊂ int(λ1T̄j(i))
with diam(f1(λ2T̄i)) < minj diam(λ1T̄j) for all i.

We claim that there exists n such that the sets λ1Ti are eventually
periodic shrinking sets for g. In fact, choose a real number s1 > 0 such
that λ1T̄i ⊂ Bi

s1
and choose other real number s2 ∈ (0, s1) such that

Bi
s2
⊂ λ2T̄i. Finally choose n such that sn1 < s2. With these choices we

have h(Bi
s1
) ⊂ Bi

s2
and thus

g(λ1T̄i) = f ◦ h(λ1T̄i) ⊂ f ◦ h(Bi
s1
) ⊂ f(Bi

s2
) ⊂ f(λ2T̄i) ⊂ λ1Tj(i).

Since there exists only a finite number l of simplexes in the triangula-
tion, this assertion implies that λ1Ti is an eventually periodic shrinking
set with the sum of the transience time plus the period bounded by l.
By construction, Properties (i), (ii) and (iii) are satisfied. �

When M is a manifold without boundary, the following result was
proven by Abdenur and Andersson in [AA] for typical f ∈ C(M) in any
finite dimension and for typical f ∈ H(M) in dimension at least two.
Our proof works also when M is a manifold with boundary, and also
for f ∈ H(M) in dimension one.

Corollary 6. Let f be a typical map in C(M) (resp. H(M)). Then,
for Lebesgue almost every point x ∈M , the sequence

{ 1

n

n−1
∑

j=0

δfj(x)

}

n∈N+

of empirical probabilities is convergent,
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Proof. Consider the families Sq,k for q, k ∈ N+, defined at the beginning
of the proof of Theorem 5. We proved that each Sq,k is open and dense,
so typical f belong to S :=

⋂

q,k≥1 Sq,k. Thus, it is enough that the
assertion of this corollary holds for all f ∈ S. Consider a continuous
function φ :M → R. Since M is compact, for every ε > 0 we can find
a δ > 0 such that if dist(x, y) < δ then |φ(x) − φ(y)| < ε. Suppose
f ∈ Sq,k with q such that 1/q < δ. Due to Theorem 5, Lebesgue
a.e. belongs to an eventually periodic shrinking set of diameter smaller
than 1/q. It is enough to prove the convergence of the corollary for any
iterate of x instead of x; thus we can assume that x ∈ Ii where Ii is a
periodic shrinking set. Denote the period of Ii by p. Then for n > p we
write n = ℓp+r with 0 ≤ r < p. Since Ii is a periodic shrinking set with
diameter smaller than 1/q we have dist(f ℓp+rx, f rx) ≤ diamf r(Ii) ≤
diam(Ii) < 1/q < δ. Thus

(3)

∣

∣

∣

∣

∣

ℓp−1
∑

j=0

φ(f jx)− ℓ

p−1
∑

j=0

φ(f jx)

∣

∣

∣

∣

∣

< ℓε.

Then

∣

∣

∣

1

n

n−1
∑

j=0

φ(f jx)−
1

p

p−1
∑

j=0

φ(f jx)
∣

∣

∣
≤

∣

∣

∣

1

n

n−1
∑

j=0

φ(f jx)−
1

ℓp

ℓp−1
∑

j=0

φ(f jx)
∣

∣

∣
+

∣

∣

∣

1

ℓp

ℓp−1
∑

j=0

φ(f jx)−
1

p

ℓp−1
∑

j=0

φ(f jx)
∣

∣

∣
.

(4)

Using (3) we see that second term is bounded by ε/p < ε. Using the
triangle inequality once more we can bound the first term by

∣

∣

∣

1

n

n−1
∑

j=ℓp

φ(f jx)
∣

∣

∣
+
∣

∣

∣

r

nℓp

ℓp−1
∑

j=0

φ(f jx)
∣

∣

∣
.

Since r is bounded, for n sufficiently large this is bounded by ε, and
the difference in (4) is bounded by 2ε.

We deduce that

lim sup
1

n

n−1
∑

j=0

φ(f jx)− lim inf
1

n

n−1
∑

j=0

φ(f jx) < 4ε.

Since ε > 0 is arbitrary, the result follows. �
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A map f ∈ C(M) is Lebesgue-a.e. strongly non positively expansive,
if for any real number α > 0, and for Lebesgue a.e. x ∈M ,

Leb
(

{y ∈M : dist(fn(x), fn(y)) < α ∀ n ∈ N}
)

> 0.

So, according to [AM, Definition 2.1], the Lebesgue measure is non
positively expansive. Moreover, using the notation of [AM, Section 2]:

Leb(Φα(x)) 6= 0 Leb-a.e. x ∈M, where

Φα(x) := {y ∈ M : dist(fn(y), fn(x)) < α.

Namely, the positive expansivity of the Lebesgue measure fails not only
in some points, but Lebesgue a.e..

Corollary 7. Typical maps in C(M) (resp. f ∈ H(M)) are Lebesgue-
a.e. strongly non positively expansive.

Proof. Take any periodic or eventually periodic set I with diameter
smaller than α. Then, diam(f j(I)) < α for all j ≥ 0. Any two points
x, y ∈ I satisfy dist(f j(x), f j(y)) < α for all j ≥ 0. Thus for any point
x ∈ I we have

Leb
(

{y ∈M : dist(fn(x), fn(y)) < α ∀ n ∈ N}
)

≥ Leb(I) > 0.

Thus the result follows directly from Theorem 5. �

An f ∈ C(M) is called positively expansive if there exists a constant
α > 0, called the expansivity constant, such that, for any two points
x, y ∈ M , if dist(fn(x), fn(y)) ≤ α for all n ∈ N, then x = y. Clearly
a map which is Lebesgue a.e. strongly non positively expansive is not
positively expansive. For compact connected manifolds with boundary
it is known that every map is not positively expansive (Theorem 2.2.19,
[AH]). On the other hand, if M has no boundary, then we have ex-
amples of positively expansive maps for example hyperbolic expanding
toral diffeomorphisms.

3.1. The sets AA and AA1. For any x ∈M we define

(5) µx := lim
n→∞

1

n

n−1
∑

j=0

δfj(x)

when this limit exists; namely, when pω(x) = {µx}. Let
(6)
AA := {x ∈M : pω(x) = {µx}} and AA1 := {x ∈ AA : µx ∈ Of}.

For typical continuous maps or homeomorphisms, Corollary 6 states

(7) Leb(AA) = Leb(M),
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while [CE2, Proposition 3.1 and Definition 3.2] implies that

(8) Leb(AA1) = Leb(M).

Proposition 8. If f is typical in C(M) (resp. H(M)) then

Of = {µx : x ∈ AA1}.

The set {x ∈ AA1 : d(µx, µx0) < ε} has positive Lebesgue measure for
every ε > 0 and for every x0 ∈ AA1.

Proof. By definition of the set AA1 we have {µx : x ∈ AA1} ⊂ Of .
Besides, since Of is closed in the weak∗ topology (see [CE1, Theorem

1.3]), we have {µx : x ∈ AA1} ⊂ Of .
We turn to the other inclusion. Suppose µ ∈ Of , i.e.,

Leb{x ∈M : d(pω(x), µ) < ε)} > 0 for all ε > 0.

Since Leb(AA1) = 1 and pω(x) = µx for x ∈ AA1, this is equivalent to

Leb{x ∈ AA1 : d(µx, µ) < ε)} > 0 for all ε > 0.

Thus µ ∈ {µx : x ∈ AA1}. Since µ ∈ Of is arbitrary we conclude

Of ⊂ {µx : x ∈ AA1}. The first assertion of Proposition 8 is proven.
To prove the second assertion recall the definition of pseudo-physical

measure, µ ∈ Of if the set {x ∈ M : d(pω(x), µ) < ε} has positive
Lebesgue measure. Combining this with Equality (8), we deduce that
{x ∈ AA1 : d(µx, µ) < ε} has positive Lebesgue measure, for any µ ∈
Of , in particular for µx0 for any x0 ∈ AA1. �

3.2. Approximation of pseudo-physical measures by periodic
measures. In this subsection we will prove Theorem 10: each pseudo-
physical measure can be arbitrarily approximated by atomic measures
supported on periodic point. We will use the following lemma.

Lemma 9. Let f ∈ C(M) (resp. f ∈ H(M)) and µ be an f -invariant
measure. Assume that I ⊂ M is a periodic shrinking set of period p,
and denote K :=

⋃p−1
j=0 f

j(I). Then

(9) µ(f j(I)) = µ(I) =
µ(K)

p
∀ j ≥ 0.

If µ is additionally ergodic, then µ(K) is either zero or one.

Proof. For any j ≥ 0 let j = kp− i with k ∈ N+ and 1 ≤ i ≤ p. Using
that µ is f -invariant, that f p(I) ⊂ I and that f−j(f j(I)) ⊃ I for all
j ≥ 0, we obtain:

µ(f j(I)) = µ(f−j(f j(I)) ≥ µ(I) ≥ µ(fkp(I)) = µ(f−i(fkp(I)) ≥ µ(f j(I)).
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Hence, all the inequalities above are equalities; and thus µ(f j(I)) =

µ(I) for all j ≥ 0. Assertion (9) follows, since µ(K) =
∑p−1

j=0 µ(f
j(I)).

Finally, since f(K) ⊂ K, we have K ⊂ f−1(f(K)) ⊂ f−1(K). Since
µ is ergodic, the set K must have µ-measure equal to zero or one. �

Theorem 10. Typical maps f ∈ C(M) (resp. f ∈ H(M)), satisfy
Of ⊂ Perf .

Proof. Choose qn ≥ 1 such that any two measures satisfying the qn-
approach conditions of Lemma 4, are mutually at distance smaller than
1/n. Let µ ∈ Of . By the definition of pseudo-physical measure, the
set An ⊂M of points y such that

d(pω(y), µ) < 1/n,

has positive Lebesgue measure. If f is typical in C(M) or H(M),
then Lebesgue a.e. yn ∈ An satisfy pω(yn) = {µyn} (Corollary 6) and
is contained in an arbitrarily small eventually periodic shrinking set
(Theorem 5). Therefore,

(10) d(µyn, µ) < 1/n,

and µyn is supported on Kn :=
⋃pn

j=1 f
j(In), where In is a periodic

shrinking set of period pn, such that diam(In) ≤ 1/qn. Applying
Lemma 9 and the definition of shrinking set yields µyn(f

j(In)) = 1/pn.
Since the set In is shrinking periodic with period pn, there exists

at least one periodic orbit of period pn in Kn. Consider the periodic
invariant measure νn supported on this periodic orbit. It also satisfies
νn(f

j(I)) = 1/pn. So, applying Lemma 4 we deduce that

(11) ∃ νn ∈ Perf : d(µyn, νn) ≤ 1/n.

Combining Inequalities (10) and (11), we deduce that there exists
sequence of periodic atomic measures νn such that d(νn, µ) < 2/n,
finishing the proof of Theorem 10. �

4. Most invariant measures are not pseudo-physical

In this section we will prove Theorem 2. We start with an extension
of Theorem of Abdenur and Andersson in [AA, Theorem 3.6]:

Theorem 11. (Extension of Abdenur-Andersson Theorem) For
typical maps in C(M) there does not exist physical measures.

Proof. In [AA, Theorem 3.6], Abdenur and Andersson prove this asser-
tion in the case that M is a compact connected C1 manifold without
boundary. Now, let us prove that it also holds when M has boundary.
Given a manifold with boundary M , take two disjoint copies M1,M2
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and identify each boundary point in M1 with the same point in M2. We
obtain the double cover D(M) of M which is a C1 manifold without
boundary with the same dimension as M . See for example 9.32 in [L]
for details of this consruction.

Suppose that M has boundary, and denote by V the family of all the
continuous map f ∈ C(M) such that f(M) ⊂M \∂M . By construction
V is open and dense in C(M). For each f ∈ V, construct the nonempty
set Sf ⊂ C(D(M)) composed by all the continuous maps g : D(M) 7→
D(M) such that g|M1 = f .

We claim that for any open set U ⊂ V the set

U ′ :=
⋃

f∈U

Sf =
{

g ∈ C(D(M)) : g|M1 =: f ∈ U
}

is open in C(D(M)); in particular V ′ is open in C(D(M)). This
claim follows from that fact that the restriction that sends each map
g ∈ C(D(M)) to the map g|M1 : M1 7→ g(M1) ⊂ M is a continuous
operator. Therefore, the preimage U ′ by that restriction, of the open
family U ⊂ V ⊂ C(M) ⊂ C(M1, D(M)), is open.

Next we claim that a converse-like statement is true: for any open
set U ′ ⊂ V ′ ⊂ C(D(M)) the set

(12) U :=
{

f ∈ V : ∃ g ∈ U ′ ⊂ C(D(M)) such that g|M1 = f
}

is open in C(M). In fact, since U ′ ⊂ V ′, the restriction g|M1 for each
g ∈ U ′, belongs to V. Besides, the restriction that sends each map
g ∈ V ′ to the map f := g|M1 ∈ V is an open operator. Therefore, the
image U by that restriction, of the open family U ′, is open.

Since Theorem 11 holds for typical maps g ∈ C(D(M)), and V ′ is
nonempty and open in C(D(M)), it also holds for typical maps g ∈ V ′.
Namely, there exists a sequence {U ′

n}n≥1 of open and dense subsets
of V ′ such that assertions a) and b) hold for all g ∈

⋂

n≥1 U
′
n ⊂ V ′.

Consider the preimages Un ⊂ V defined in (12), of the sets Un. Since
Un is open and dense in V ′, the above assertions imply that Un is open
and dense in V; hence also in C(M).

If Theorem 11 holds for a map g ∈ V ′ ⊂ C(D(M)), then it also holds
for the restriction g|M1 ∈ V ⊂ C(M). We conclude that it holds for
the countable intersection

⋂

n≥1 Un of open and dense sets in C(M). In
other words, Theorem 11 holds for typical maps in C(M). �

The following theorem follows easily from results of Hurley and his
coauthors on the existence of many periodic points for homeomorphism
of manifolds of dimension at least two without boundary [AHK, H1].
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We give a different proof which also works for manifolds with boundary
and also in dimension one.

Theorem 12. Typical maps in C(M) (resp. H(M)) are not uniquely
ergodic.

Proof. First, let us argue in C(M). Recall that Lebesgue a.e. x ∈ M
belongs to the set AA1 defined by Equality (6). We claim that if
f ∈ C(M) is typical, then for any ε > 0 and any x0 ∈ AA1 the set
{x ∈ AA1 : µx 6= µx0 and d(µx, µx0) < ε} has positive Lebesgue mea-
sure.

To prove the claim we argue by contradiction, assume that there
exists x0 ∈ AA1 and ε > 0 such that

(13) Leb{x ∈ AA1 : µx 6= µx0 and d(µx0, µx) < ε} = 0.

Since µx0 is pseudo-physical, by definition we have

Leb({x ∈M : d(pω(x), µx0) < ε}) > 0.

Since Leb(AA1) = 1 we deduce that

Leb({x ∈ AA1 : d(µx, µx0) < ε}) > 0.

Combining this last assertion with Inequality (13), we obtain that

Leb({x ∈ AA1 : µx = µx0)}) > 0.

So, µx0 is a physical measure, contradicting Theorem 11, the claim is
proven.

Since the measures µx are f -invariant for all x ∈ AA1, we deduce
from the claim that f is not uniquely ergodic.

Now let us prove Theorem 12 for typical f ∈ H(M). From Theorem
5, there exists a periodic shrinking set I with arbitrarily small diameter.
Denote by p the period of I, and by x0 ∈ I a periodic point of period p.
Recall that diam(f j(I)) < diam(I). Besides the sets f i(Ī) are pairwise
disjoint for j ∈ {0, . . . , p − 1}, f p(Ī) ⊂ I, and this inclusion is strict
since diam(f p(I)) < diam(I). Therefore, if diam(I) is small enough,
then

K :=

p
⋃

j=1

f j(I) 6=M.

Denote by ν the atomic invariant measure supported on the periodic
orbit of x0. We clain that there exists δ > 0 such that for any Borel
probability measure µ (not necessarily invariant), if dist(µ, ν) < δ, then
µ(I) > 0.
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To prove the claim, we argue by contradiction. Assume that there
exists µn → ν such that µn(I) = 0. Consider ψ :M 7→ [0, 1] defined by

(14) ψ(x) :=
dist(x,M \ I)

dist(x, f p(I)) + dist(x,M \ I)
.

This function is continuous and satisfies ψ|fp(I) = 1, 0 < ψ(x) < 1 if

x ∈ I \ f p(I)) and ψ(x) = 0 if x 6∈ I. Since µn(I) = 0, we obtain
∫

ψ dµn = 0, and taking the weak∗-limit of µn, we deduce
∫

ψ dν = 0;
hence ψ = 0 ν-a.e., which contradicts that ν(I) = 1/p > 0 and ψ > 0
for all x ∈ I, finishing the proof of the claim.

Now, let us prove that f is not uniquely ergodic. Arguing by contra-
diction, if ν were the unique invariant measure, then (1/n)

∑n−1
j=0 δfj(x)

would converge uniformly to ν for all x ∈ M as n → +∞. Therefore,
there would exist n0 ≥ 1 such that

dist
(

ν, (1/n0)

n0−1
∑

j=0

δfj(x)

)

< δ ∀ x ∈M.

Applying the claim for all x ∈ M , there would exist 0 ≤ j = j(x) ≤
n0 − 1 such that f j(x) ∈ I. Since I is shrinking periodic, we would
deduce that fn0(x) ∈ K for all x ∈ M . Therefore, applying assertion
(14), the image of M by the homeomorphism fn0 :M 7→M would not
be M , which is a contradiction. �

Now, we state the main lemma to be used to prove Theorem 2.

Lemma 13. Suppose that f is a typical map in C(M) (resp. H(M)), µ1

is f -invariant and supported on K =
⋃p−1

j=0 f
j(Ī), where I is a periodic

shrinking set of period p, and that µ2 is f -invariant such that µ2(K) =
0. Then, no convex combination ν = λµ1 + (1 − λ)µ2 with 0 < λ < 1
is pseudo-physical.

Proof. Since I is a shrinking periodic set with period p, it is is open, I
is an m-simplex, and f p(I) ⊂ I. Consider the continuous real function
ψ : M → [0, 1] defined by Equality (14). It satisfies ψ|fp(I) = 1,

0 < ψ(x) < 1 if x ∈ I \ f p(I), and ψ(x) = 0 if x 6∈ I.

Since µ1 is supported on K =
⋃p−1

j=0 f
j(I), we can apply Lemma 9 to

deduce that

µ1(I) = µ1(f
p(I)) =

1

p
; hence µ1(I \ f

p(I)) = 0.

We obtain
∫

ψ dµ1 = µ1(f
p(I)) = 1/p and

∫

ψ dµ2 = µ2(I) = 0. There-
fore 0 <

∫

ψ dν = λ/p < 1/p.
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Choose ε > 0 such that for any measure µ, if d(ν, µ) < ε, then
∫

ψ dµ > 0 and
∫

ψ dµ < 1/p.
Consider the set

A′
ε(ν) := {x ∈ AA : dist(µx, ν) < ε},

where the set AA is defined in Equality (6). We claim that the set
A′

ε(ν) is empty. Arguing by contradiction, assume that there exists
x ∈ A′

ε(ν). Then, from the choice of ε, we have

(15) 0 <

∫

ψ dµx < 1/p,

and from (5) we deduce that there exists n0 ≥ 1 such that

1

n

n−1
∑

j=0

ψ(f j(x)) =

∫

ψ
(1

n

n−1
∑

j=0

δfj(x)

)

> 0 ∀ n ≥ n0.

Thus, there exists n1 ≥ 1 such that ψ(fn1(x)) > 0; hence fn1(x) ∈ I.
This implies that the future orbit of fn1x is contained in K. Hence,
µx is supported on K. Since µx is f -invariant, we apply Lemma 9 to
deduce that µx(f

p(I)) = 1/p and µx(I \ f
p(I)) = 0. Therefore,

∫

ψ dµx = µx(f
p(I)) =

1

p
,

contradicting (15). We have proved that A′
ε(ν) is empty.

The definition of pseudo-physical measure µ asserts that

Leb(Aε(µ)) > 0 ∀ ε > 0.

But (7) implies that Leb(A′
ε(ν)) = Leb(Aε(ν)), which equals zero be-

cause A′
ε(ν) = ∅. We conclude that ν is not pseudo-physical. �

4.1. End of the proof of Theorem 2.

Proof. From [CE1, Theorem 1.3] the set Of is closed. Let us prove that
its interior in Mf is empty. Fix µ ∈ Of . Since a typical map is not
uniquely ergodic (recall Theorem 12), there exists an ergodic measure
ν 6= µ. Denote by ε := d(µx, ν) > 0. Consider an arbitrary δ ∈ (0, ε/2).

From Proposition 8, we can find x0 ∈ AA1 such that d(µx0, µ) < δ.
So, to prove that µ does not belong to the interior of Of in Mf , it is
enough to prove that the δ-neighborhood of µx0 in Mf is not contained
in Of . To do that, it is enough to find a sequence {µn}n ⊂ Mf

converging to µx0 and such that µn 6∈ Of .
Applying Theorem 5 and Equality (8), and taking into account the

second part of Proposition 8, the point x0 could be chosen to belong
to arbitrarily small eventually periodic shrinking sets. Therefore, for
any fixed q ∈ N

+ (that will be chosen later), the probability measure
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µx0 is supported on the orbit of a periodic shrinking set Iq of diameter
smaller than 1/q. Denote by p the period of Iq, and denote

K =

p−1
⋃

j=0

f j(Iq).

We have µx0(K) = 1. So, applying Lemma 9 we deduce

µx0(f
j(I)) = 1/p 0 ≤ j ≤ p− 1.

Applying Lemma 4, construct q ≥ 1 such that if µ is a probability
measure satisfying µ(f j(I)) = µx(f

j(I)) = 1/p with diam(f j(I)) < 1/q
for all 0 ≤ j ≤ p − 1, then d(µ, µx) < δ. Since d(µ, ν) = ε > δ,
we deduce that ν(f j(I)) 6= 1/p for some j. But applying Lemma 9
ν(f j(I)) = ν(K)/p for all j, with ν(K) ∈ {0, 1}. Since ν is ergodic,
we conclude that ν(K) = 0. Therefore, applying Lemma 13, µn :=
λnµx + (1 − λn)ν ∈ Mf \ Of for all 0 < λn < 1. Taking λn → 1−, we
obtain µn → µx, with µn ∈ Mf \ Of , as wanted. �

5. Pseudo-physical, ergodic and periodic measures.

A δ-pseudo-orbit of f is a sequence {yn}n∈N ⊂M such that

dist(f(yn), yn+1) < δ ∀ n ∈ N.

A δ-pseudo-orbit {yn}n∈N is periodic with period p ≥ 1, if

yn+p = yn ∀ n ∈ N.

A map f ∈ C(M) has the periodic shadowing property if for all ε > 0,
there exists δ > 0 such that, if {yn}n∈N is any periodic δ-pseudo-orbit,
then, at least one periodic orbit {fn(x)}n∈N satisfies

dist(fn(x), yn) < ε ∀ n ∈ N.

We will also use the following result, which is the accumulation of
many authors’ work.

Theorem 14. Typical maps f ∈ C(M) (resp. H(M)) have the periodic
shadowing property.

Proof. The statement follows from [KMOP, Theorem 1.2] and [PP,
Theorem 1]. Earlier special cases where treated in [Y] and [O]. �

Recall that Ef denotes the set of ergodic measures, and Perf denotes
the set of invariant measures supported on periodic orbits of f . As a
consequence of Theorem 14:

Corollary 15. For a typical map f ∈ C(M) (resp. f ∈ H(M)) we
have Ef ⊂ Perf .
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Remark. The closing lemma and the closeability properties (see for
instance [CS, Definition 2.1] and [GK, Definitions 4.1 and 4.5]), state
that for all ǫ > 0 there exists δ > 0 such that, for a finite piece of orbit
{f j(y}0≤j≤p verifying dist(f p(y), y) < δ, there exists a periodic point x,
whose period is p or at least (ǫ·p)- near p, satisfying dist(f j(y), f j(x)) <
ǫ for all 0 ≤ j ≤ p. It is known that the closing lemma and the
closeability properties imply Ef ⊂ Perf (see for instance [CS, Lemma
2.2] and [GK, Theorems 4.10]). Nevertheless, we do not know if typical
maps in C0(M) satisfy the closing lemma or the closeability properties.

Proof of Corollary 15. From the definition of distance in the weak∗

topology of the space of probability measures it is standard to check
that for all ε0 > 0, there exists ε > 0, such that, for any two points
x1, x2 ∈M ,

dist(x1, x2) < ε ⇒ d(δx1, δx2) < ε0.

Fix any µ ∈ Ef . Since µ is ergodic, we have pω(x) = {µ} for µ-a.e. x ∈
M. Fix such a point x; then there exists n0 ≥ 1 such that

(16) d

(

1

n

n−1
∑

j=0

δfj(x), µ

)

< ε0 ∀ n ≥ n0.

Given ε, choose δ > 0 given by Theorem 14. By Poincaré Recurrence
Lemma, the point x can be chosen to be recurrent. Thus

d(f p−1(x), x) < δ for some p ≥ n0.

Construct the periodic δ-pseudo-orbit {yn}n∈N of period p defined by
yn = fn(x) for all 0 ≤ n < p, yn+p = yn for all n ≥ 0. Apply-
ing Theorem 14, there exists a periodic orbit {fn(z)}n≥0, such that
dist(fn(z), yn) < ε ∀ n ≥ 0. By construction, if ip ≤ n < (i + 1)p
and i ≥ 0 then dist(fn(z), fn−ip(x)) < ε. Thus, from the choice of ε,
we obtain d(δfn(z), δfn−ip(x)) < ε0 Denote by q the period of z. Taking
into account that balls are convex in the weak∗-distance in the space
of probabilities, we deduce

d

(

1

qp

qp−1
∑

j=0

δfj(z),
1

qp
q ·

p−1
∑

j=0

δfj(x)

)

< ε0.

For the atomic invariant measure ν supported on the periodic orbit of
z, we have

ν =
1

q

q−1
∑

j=0

δfj(z) =
1

qp

qp−1
∑

j=0

δfj(z).
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Thus,

d

(

ν,
1

p

p−1
∑

j=0

δfj(x)

)

< ε0.

Together with (16), this implies that for any ε0 the given ergodic mea-
sure µ is 2ε0-approximated by some measure ν ∈ Perf , finishing the
proof of Corollary 15. �

An invariant measure µ is called infinitely shrinked if there exists a
sequence {Iq}q≥0 of periodic shrinking intervals Iq, of periods pq, such
that diam(Iq) < 1/q and µ(

⋃pq
i=1 f

j(Īq)) = 1 for all q ≥ 1. We denote
by Shrf ⊂ Mf the set of infinitely shrinked invariant measures. Define

AA2 := {x ∈ AA1 : µx ∈ Shrf}.

Theorem 16. For a typical map f ∈ C(M) (resp. f ∈ H(M)),

Leb(AA2) = 1 and Of = {µx : x ∈ AA2} = Shrf .

Proof. From Theorem 5, Lebesgue-a.e. x ∈M belongs to a sequence of
eventually periodic or periodic shrinking sets Jq with diam(Jq) < 1/q.
Every eventually periodic shrinking set Jq wanders under f until it
drops into a periodic shrinking set Iq with diam(Iq) < diam(Jq) < 1/q.
By the definition of periodic shrinking set, every point of Iq has all the
measures of pω(x) supported on the compact set

Kx,q :=

pq−1
⋃

j=0

f j(Iq).

In particular for Lebesgue almost all x ∈ AA1, the limit measure µx

defined by (5), is supported on Kx,q. Thus, for a.e. x ∈ AA1 we have
µx ∈ Shrf . Taking into account (8), the above assertion implies that
the set AA2 has full Lebesgue measure.

By construction, AA2 ⊂ AA1. So, applying Proposition 8, we obtain:

{µx : x ∈ AA2} ⊂ {µx : x ∈ AA1} = Of .

To obtain the opposite inclusion, we apply [CE1, Theorem 1.5]): Of is
the minimal weak∗-compact set of probability measures, that contains
pω(x) for Lebesgue a.e. x. Since {µx : x ∈ AA2} is weak∗-compact and
contains pωx = {µx} for Lebesgue almost all x (because Leb(AA2) =
Leb(M)), we conclude that

{µx : x ∈ AA2} ⊃ Of .

The inclusion {µx : x ∈ AA2} ⊂ Shrf follows trivially from the defi-
nition of the set AA2. Now, let us prove the opposite inclusion. We will
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prove that every shrinking measure is pseudo-physical. Let µ ∈ Shrf .
For any ε > 0, choose q ≥ 1 as in Lemma 4. By the definition of
shrinking measure, there exists a periodic shrinking set I ′q′ such that µ
is supported on

Kµ =

pq′−1
⋃

j=0

f j(I ′q′)

for the periodic shrinking set I ′q′ of period pq′ , such that diam(I ′q′) <

1/q′; hence diam(f j(I
′

q′)) < 1/q′ ∀ 1 ≤ j ≤ pq′, µ(Kµ) = 1.
Besides, for any point x ∈ I ′q′, any measure in pωx is also supported

on Kµ. If additionally x ∈ AA1, then pωx = {µx}, so µx(Kµ) = 1.
Finally, applying Lemmas 4 and 9, we deduce that the measures µ ∈
Shrf and µx given above satisfy

d(µ, µx) < ε for any x ∈ Iq ∩AA1.

Since Leb(I ′q′ ∩ AA1) = Leb(I ′q′) > 0, the basin Aε(µ) has positive
Lebesgue measure; namely µ is pseudo-physical.

We have shown that every shrinking measure is pseudo-physical.
Since the set Of of pseudo-physical measures is closed, we conclude

Shrf ⊂ Of ,

finishing the proof of Theorem 16. �

Theorem 17. For any map f ∈ C(M) (resp. f ∈ H(M)), if µ ∈ Shrf ,
then it is ergodic.

Before proving Theorem 17 let us deduce its main consequence:

Corollary 18. For a typical map f ∈ C(M) (resp. f ∈ H(M)):

Of = Shrf ⊂ Ef = Perf .

The corollary immediately follows by combining Corollary 15 with
Theorems 16 and 17. At the end of the next section we will prove that
for typical maps these sets are all equal.

Proof of Theorem 17. Fix f ∈ C(M). Suppose µ ∈ Shrf , and µ1, µ2 ∈
Mf such that

(17) µ = λµ1 + (1− λ)µ2, with 0 < λ < 1,

We shall prove that µ1 = µ2 = µ; namely µ is extremal in the convex
compact set of invariant measures; hence ergodic.

Take arbitrary ε > 0 and fix q ≥ 1 as in Lemma 4. By the definition
of infinitely shrinking measures, there exists a periodic shrinking set
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Iq, with diam(Iq) < 1/q, and period pq, whose f -orbit Kq supports µ.
The definition of periodic shrinking set and Lemma 9 tell us:

µ(f j(Iq)) =
1

pq
, diam(f j(Iq)) < 1/q ∀ 1 ≤ j ≤ pq.

Since µ(Kq) = 1, from (17) we deduce µ1(Kq) = µ2(Kq) = 1. Ap-
plying Lemma 9 we obtain

µ1(f
j(Iq)) = µ2(f

j(Iq)) =
1

pq
∀ 1 ≤ j ≤ pq.

So, Lemma 4 implies d(µ1, µ) < ε, and d(µ2, µ) < ε. Since ε > 0 is
arbitrary, we conclude that µ = µ1 = µ2; hence µ is ergodic. �

6. All ergodic measures are pseudo-physical.

Definition 19. Let q ≥ 1 and x0 be a periodic point with period r ≥ 1.
We call the (invariant) measure

ν =
1

r

r−1
∑

j=0

δfj(x0) ∈ Perf

a q-shrinked periodic measure, if there exists some periodic shrinking
set I, with diameter smaller than 1/q, with period p ≥ 1 such that
ν is supported on K :=

⋃p
j=1 f(Ī). From the definition of periodic

shrinking set, the period p must divide r. We denote by ShrqPerf the
set of q-shrinked periodic measures.

We say that an invariant measure µ, is ε-approached by q-shrinked
periodic measures if there exists ν ∈ ShrqPerf such that d(µ, ν) < ε.
We denote by AShrε,qPerf the set of measures that are ε-approached
by q-shrinked periodic measures.

Theorem 20. For any map f ∈ C(M) (resp. f ∈ H(M))
⋂

ε>0

⋂

q≥1

AShrε,qPerf ⊂ Of .

Proof. Fix ε > 0, and choose q ≥ 1 as in Lemma 4, such that 1/q < ε.
For any µq ∈ AShr1/q,qPerf , denote by νq a measure in ShrqPerf such
that

d(µq, νq) < 1/q < ε.

Consider the periodic shrinking set I = I(νq) and the compact set K
for νq from Definition 19. From the definition of periodic shrinking set,

any point x ∈ I satisfies fn(x) ⊂ K =
⋃p−1

j=0 f
j(Ī) for all n ≥ 0. So,
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any measure µx ∈ pω(x) is supported on K. Also νq is supported on
K. Thus, applying Lemma 9, we deduce that

µx(f
j(Ī)) = νq(f

j(Ī)) =
1

p
∀ 1 ≤ j ≤ p; diam(f j(Ī)) <

1

q
.

Now, from Lemma 4, we obtain d(νq, µx) < ε for all µx ∈ pω(x), for all
x ∈ I. Thus, for any x ∈ I

(18) d(pω(x), νq) < ε, hence d(pω(x), µq) < 2ε.

Note that when we vary the value of ε > 0, the value of q, and thus
also the measures νq and µq and the set I, may change. So, from the
above inequality we can not deduce that each µq is pseudo-physical.
Nevertheless, we have proved that for any fixed value of ε > 0 there
exists q ≥ 1 such that Inequality (18) holds for all µq ∈ AShr1/q,qPerf .

Now, consider any measure µ′
q ∈ AShr1/q,qPerf . Thus, there exists

µq ∈ AShr1/q,qPerf such that

d(µ′
q, µq) < ε.

Combining this with (18) we deduce that, for all ε > 0 there exists q ≥ 1
such that, for any measure µ′

q ∈ AShr1/q,qPerf there exists an open set
I (the periodic shrinking set I(νq) for the measure νq associated to µ′

q)
such that

(19) d(pω(x), µ′
q) < 3ε ∀ x ∈ I.

So, if µ ∈
⋂

ε>0

⋂

q≥1 AShrε,qPerf , then, for all ε > 0 there exists an

open set I satisfying assertion (19). Thus Leb(A3ε(µ)) ≥ Leb(I) > 0
for all ε > 0; hence µ ∈ Of , as wanted. �

The last ingredient of the proof of Theorem 1 is the following theo-
rem.

Theorem 21. For a typical map f ∈ C(M) (resp. f ∈ H(M)),

(20) Perf ⊂
⋂

q≥1

AShrε,qPerf ∀ ε > 0.

Before proving Theorem 21, let us introduce the following definition:

Definition 22. Fix q, r ∈ N+. A good q, r-covering Uq,r for f ∈ C(M)
(resp. H(M)), is a finite family of open simplexes (i.e., the interiors of
simplexes) such that

(1) Uq,r covers the compact set Per(f, r) := {x ∈ M : f rx = x}.
(2) diam(Ui) < 1/q for any Ui ∈ Uq,r.
(3) For any Ui ∈ Uq,r, there exists a periodic shrinking set Ii, with

period pi ≤ r, with pi that divides r, such that Īi ⊂ Ui.
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We call a map f ∈ C(M) (resp. H(M)) a good q, r-covered map, if
there exists a good q, r-covering Uq,r for f . We denote by Pq,r ⊂ C(M)
(resp. H(M)) the set of all good q, r-covered maps.

Proof of Theorem 21. We claim that, for fixed q, r ≥ 1, the set Pq,r is
open in C(M). Fix f ∈ Pq,r, and denote its good q, r-covering by Uq,r =

{U1, U2, . . . , Uh}. The compact set K =M \
⋃h

i=1 Ui does not intersect
the compact set {f r(x) = x}. Let us prove that for all g ∈ C(M)
(resp. H(M)) close enough to f , the same compact set K (defined for
the same covering Uq,r) does not intersect {gr(x) = x}. In fact, the
real function φf(·) := dist(f r(·), ·) depends continuously on f . Since
minx∈K φf(x) > 0, we deduce minx∈K φg(x) > 0 for all g ∈ C(M)
(resp. H(M)) close enough to f . In other words, Uq,r also covers the
fixed points of gr. Thus, the good q, r-covering of f , is also a covering
satisfying conditions (1) and (2) of Definition 22, for any g ∈ C(M)
(resp. H(M)) close enough to f . Now, let us prove that Condition (3)
for g is satisfied by the same covering Uq,r, provided that g is close
enough to f . Consider a f -shrinking periodic set Ii ⊂ Ui ∈ Uq,r, of
period pi. Now Ii is a periodic shrinking set with the same period pi
for all g sufficient close to f . Since the family {Ii}1≤i≤h of shrinking
periodic sets to be preserved is finite, we conclude that (3) is also
satisfied for any g sufficiently close to f and thus Pq,r is open in C(M)
(resp. H(M)).

In Lemma 23, we will prove that Pq,r is dense in C(M) (resp. H(M)).
Let us conclude the proof of Theorem 21 assuming that Lemma 23 is
proven. Observe that, for fixed q, r ≥ 1, any f ∈ Pq,r has the following
property: any point x0 fixed by f r (in particular any periodic point x0
of period r) is (1/q)-near all the points of a periodic shrinking set I0
with diameter smaller than 1/q, and with period p0 ≤ r, p0 dividing r.

Besides, any periodic shrinked set of period p0 has at least one pe-
riodic point y0, fixed by f p0. We deduce that I0, whose diameter is
smaller than 1/q, contains a periodic point y0. Using the definition of
the set of measures ShrqPerf , we summerize this assertion as follows:

(21) for all x0 with period r, there exists

ν0 :=
1

r

r−1
∑

j=0

δfj(y0) ∈ ShrqPerf , with dist(y0, x0) < 1/q.

For r ≥ 1 fixed, consider f ∈
⋂

q≥1Pq,r. Let µ0 := 1
r

∑r−1
j=0 δfj(x0).

Fix ε > 0 and choose q′ ≥ 1 as in Lemma 4. Since f j is continuous
for each j, we can find a q > q′ so that if dist(x, y) < 1/q, then



24 ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

dist(δfjx, δfjy) < 1/q′ for all j ∈ {0, 1, . . . , r}. Then Lemma 4 implies
that d(µ0, ν0) < ε.

We have shown that for any given periodic orbit {f j(x0)}0≤j≤r−1 of
period r, the distance between the periodic measure supported on it,
and some measure νq ∈ ShrqPerf , for all q large enough, is smaller than
ε. In other words, any periodic measure supported on a periodic orbit
of period r, belongs to

⋂

q≥1 AShrε,qPerf for all ε > 0.

Finally, if f ∈ P :=
⋂

r≥1

⋂

q≥1Pq,r, then all its periodic mea-

sures (supported on periodic orbits of any period r) will belong to
AShrε,qPerf for all q ≥ 1 and for all ε > 0. In brief, if f ∈ P, then

⋂

q≥1

Perf ⊂ AShrε,qPerf ∀ ε > 0.

As Pq,r is open and dense in C(M) (resp. H(M)), the maps f ∈ P
are typical. This ends the proof of Theorem 21, provided that Lemma
23 is proven. �

Lemma 23. For each q, r ≥ 1, the set Pq,r is dense in C(M) (resp.
H(M)).

Proof. We will use the notation that we defined in Subsection 2.2. Fix

f ∈ C(M) (resp. H(M)) and ε > 0. Consider 0 < δ := 1
q′
< min

{

1
q
, ε

2

}

such that dist(x, y) < δ implies dist(f(x), f(y)) < ε. We wish to ε-
perturb f into new map g ∈ Pq,r. Consider a triangulation T :=
{T 1, . . . , T h} of M such that the diameters of all the simplexes T i are
at most δ/3. By modifying T we can suppose that if T̄i∩Per(f, r) 6= ∅
then Ti ∩ Per(f, r) 6= ∅, where Ti = int(T i); and furthermore, for
some xi ∈ Ti ∩ Per(f, r) its orbit {xi, f(xi), . . . , f

r−1(xi)} ∩ ∂T = ∅.
Indeed, suppose some T i does not satisfy these conditions. If no point
of {x : f rx = x} is in the interior of T i but some is in ∂Ti, then we can
modify the triangulation by first slightly moving one corner of T i so
that in the resulting triangulation some point xi ∈ Per(f, r) belongs
to the interior Ti, and all the other simplexes of T which satisfied this
condition before, still satisfy it.

If the orbit of xi does not lay in the interior of the simplexes, let
1 ≤ j ≤ r− 1 be the first time that f j(xi) ∈ ∂T . Again we modify the
triangulation by slightly moving one corner of the triangulation so that
in the modified triangulation f j(xi) 6∈ ∂T , and all the other simplexes
of T which satisfied this condition before, still satisfy it. Repeat this
procedure a finite number of times to produce the desired triangulation.
We can assume that the perturbations are so small that in the resulting
triangulation the diameters of all the simplexes are at most δ/2.
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Let T (1) := {T
(1)

1 , . . . , T
(1)

l } := {T i ∈ T : Ti ∩ Per(f, r) 6= ∅} and

for each i let xi be a point in T
(1)
i ∩ Per(f, r). Using xi as a centroid,

consider a real number λ
T

(1)
i

> 1 near enough 1, such that λ
T

(1)
i

T
(1)

i

is well defined. Let λT := min{λ
T

(1)
i

: 1 ≤ i ≤ l}. For λ ∈ (1, λT )

we have xi ∈ Ti ⊂ T̄i ⊂ λTi, and {λT1, . . . , λTl} is an open cover of
Per(f, r). We choose such a value of λmax ∈ (1, λT ), so close to 1 such
that besides, each of the points xi does not lie inside λT̄j for any j 6= i,
and furthermore such that the diameters of the λTi are at most δ. For
the rest of the proof we fix such a value of λ ∈ (1, λT ).

Denote

F := {xi : 1 ≤ i ≤ l}, F r :=

r−1
⋃

j=0

f j(F ).

Hence F is consisits of exactly l different points that are fixed by f r,
and F r consists of at most rl different points, also fixed by f r.

We will define an homeomorphism h : M 7→ M . Consider a chart
(Uα, φα) such that λT̄i ⊂ Uα. Choose η > 0 so small such that for each
x ∈ F r the solid ball B(φα(x), η) ⊂ Rm does not intersect φα(Uα ∩
∂(λT )), such that the diameter of B(x, η) := φ−1(B(x, η)) is at most
δ, and such that the finite family {B(x, η) : x ∈ F r} is composed
of pairwise disjoint sets. We define h(y) = y if y 6∈

⋃

x∈F r B(x, η)).
On the complement we define h as follows. Fix x ∈ F r, and consider
polar/spherical coordinates (s, θ) : s ∈ [0, 1], θ ∈ Sm to describe the
ball B(x, η). Finally use φ−1

α to pull back these coordinates to B(x, η).
Fix a certain k ≥ 1 sufficiently large (that will be chosen later),

and define h : B(x, η) 7→ B(x, η) by setting h(s, θ) := (sk, θ). This
construction for each point x ∈ F r completes the definition of the
homeomorphism h. Thus if f is continuous then so is

g : f ◦ h,

and if f is an homeomorphism, then g is also an homeomorphism.
Note that for any y ∈M the map h satisfies

dist(y, h(y)) < δ and dist(y, h−1(y)) < δ.

Since g = f ◦ h and dist(h(y), y) < δ we have

ρ(f, g) < ε.

If besides f is an homeomorphism, then g−1 = h−1 ◦ f−1 and

dist(g−1(y), f−1(y)) = dist(h−1(z), z) < δ < ε.

Thus
ρ(g−1, f−1) < ε.
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We have proved that g is an ε-perturbation of f in C(M) (resp. H(M)).
Now, to end the proof of the lemma, it is enough to choose k such that
the set B(x, η) contains a periodic shrinking set of period that divides
r for each point x of the finite set F r.

From the above construction, we have h(0, θ) = 0. Therefore, g(x) =
g(0, θ) = f(0, θ) = f(x) for all x ∈ F r; thus each point x of F r will be
fixed by the map gr.

We claim that if we choose k large enough, then g has a shrink-
ing set around the point x ∈ Ti ∩ F r contained in B(x, η). We con-
sider the (s, θ) coordinates in the set B(x, η). Fix η1 ∈ (0, η). For
each j = 0, 1, . . . , r − 1 choose a simplex Ij containing f j(x) such

that Ij ⊂ B(f j(x), η1). Next choose η2 ∈ (0, η1) small enough such
that f(B(f jx, η2)) ⊂ Ij+1 for j = 0, 1, . . . , r − 1. In these coordinates
B(x, ηi) is given by {(s, θ) : s ∈ [0, ηi]}. Choose k > 1 so that ηk1 < η2.
For each j = 1, . . . , r we have

g(Ij) ⊂ g(B(f jx, η1)) = f ◦ h(B(f jx, η1)) ⊂ f(Bjx, η2) ⊂ Ij+1.

Thus the simplexes Ij are the desired shrinking sets. This finishes the
proof of Lemma 23. �

6.1. End of the proof of Theorem 1.

Proof. In Corollary 18 we have proved that Of ⊂ Ef = Perf . Combin-
ing Theorems 20 and 21, we deduce that

Perf ⊂
⋂

ε>0

⋂

q≥1

AShrε,qPerf ⊂ Of .

Since Of is closed, we conclude that Of = Ef = Perf , as wanted. �
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[M] J.Ṁunkres, Obstructions to the smoothing of piecewise-differentiable homeo-

morphisms Annals Math. 72 (1960) 521–554.
[O] K. Odani, Generic homeomorphisms have the pseudo-orbit tracing property,

Proc. Amer. Math. Soc. 110 (1990) 281–284.
[OU] J.C. Oxtoby, and S.M. Ulam, Measure-preserving homeomorphisms and met-

rical transitivity, Ann. of Math. (2) 42 (1941) 874–920.
[PP] S.Yu. Pilyugin, and O.B. Plamenevskaya, Shadowing is generic, Topology and

its Applications 97 (1999) 253–266.
[W] J.H.C. Whitehead, On C1-complexes, Annals Math. 41 (1940) 809–824.
[Y] K. Yano, Generic homeomorphisms of S1 have the pseudo-orbit tracing prop-

erty, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 34 (1987) 51–55.

Instituto de Matemática y Estadística “Prof. Ing. Rafael Laguardia”
(IMERL), Universidad de la República, Av. Julio Herrera y Reissig
565, C.P. 11300, Montevideo, Uruguay

E-mail address : eleonora@fing.edu.uy
URL: http:/fing.edu.uy/ ẽleonora
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