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Abstract

We consider a real analytic diffeomorphism ψ0 on a n-dimensional disk D, n ≥ 2, exhibiting
a Feigenbaum-Coullet-Trésser (F.C.T.) attractor, being far, in the Cω(D) topology, from the
standard F.C.T. map φ0 fixed by the double renormalization.

We prove that ψ0 persists along a codimension-one manifold M ⊂ Cω(D), and that it
is the bifurcating map along any one-parameter family in Cω(D) transversal to M, from
diffeomorphisms attracted to sinks, to those which exhibit chaos.

The main tool in the proofs is a theorem of Functional Analysis, which we state and prove
in this paper, characterizing the existence of codimension one submanifolds in any abstract
functional Banach space.
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1 Introduction

In dimension one, the Feigenbaum-Coullet-Tresser (F.C.T.) theory [1, 2, 3] states that the F.C.T.
attractor is a codimension one phenomenon when seen locally, in a small neighborhood of the
real analytic standard map ϕ0. This standard F.C.T. map ϕ0, is the real analytic unimodal map
in the interval, of quadratic type at its critical point, and such that ϕ0 is fixed by the doubling
renormalization in the interval.

The existence of a local codimension-one manifold through ϕ0 is a consequence of the hyper-
bolicity of ϕ0 as fixed by the doubling renormalization in the space of real analytic maps of the
interval. (See the proofs in [4, 5, 11]). This hyperbolic behavior was first proved by Lanford in
[4].

The codimension one character is also true for n-dimensional real analytic transformations, as
proved by Collet-Eckman and Koch in [17], taking as the fixed point of the doubling renormal-
ization the standard endomorphic F.C.T. map φ0 : D 7→ int (D). This endomorphism is defined
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from the standard F.C.T. map ϕ0 in the interval, by endowing the 2 ≤ n-dimensional disk D onto
its interior, with infinite codimension one contraction, such that φ0(D) is the graph of the map
ϕ0 in the interval. The precise definition of the map φ0 will be reviewed in Definition 2.2 of this
paper.

Locally, nearby the standard F.C.T. map ϕ0 in the interval, or nearby the standard F.C.T.
endomorphism φ0 in the n-dimensional diskD, the codimension one character of infinitely doubling
renormalizable maps was proved in the space of Cr transformations, provided that r is large
enough. (See [7], [5] and [8]).

Also for Cr maps, far away from the standard endormorphism φ0 in the n-dimensional disk, if
n ≥ 2 and r ≥ 8, the F.C.T. attractor is a codimension one phenomenon, as proved in [9]). This
result is not true in dimension one. For global results for maps in the interval exhibiting a F.C.T.
attractor see [5] and [11]).

We address here to the remaining open question about the codimension one character of the
F.C.T. attractor in the space Cω(D), exhibited by infinitely doubling renormalizable diffeomorh-
phisms or endomorphisms ψ0, that are far away from the standard F.C.T. endomorphism φ0 fixed
by the renormalization. We prove that, in fact, it is a codimension- one phenomenon.

The key condition to obtain that result, is the dimension two or greater of the manifold. The
result is not true in dimension one. In fact, the known proof of the codimension one character of
the F.C.T. attractor in the n−disk D (see [9]), requires the use of at least two different spatial
directions: a first direction onto which asymptotically the map contracts after successive many
doubling renormalizations; and a second direction to perturb the map and to construct a one-
parameter family destroying the F.C.T. attractor. This argument was used to prove that this
attractor is a one-parameter bifurcating phenomenon in Cr(D) in [9], and we will base on it our
new result in Cω(D). The one parameter family such constructed shall be transversal to the
desired codimension-one manifold of maps exhibiting the continuation of the F.C.T. attractor.

Nevertheless the known proof of the codimension-one character of the F.C.T. attractor in the
space Cr(D), does not work for real analytic maps. This is due to the construction, used in [9], of
a one-parameter family of non-zero diffeomorphisms or endomorphisms that have null derivative
in infinitely many points of the compact disk D. (see Lemma 5.3 of the proof of Theorem 2 in
[9]).

Following the remark of Tresser ([10]), and using the result of Theorem 2 in [9] combined with
the density of the real analytic maps in the space Cr(D) maps, we obtain the following Theorem,
whose proof is the first purpose of this paper:

Theorem 1 If ψ0 : D 7→ int(D) is a real analytic map of the n−dimensional compact disk D to
its interior, where n ≥ 2, and if ψ0 exhibits a F.C.T. attractor (see Definition 2.8), then there
exist a local codimension-one C1 manifold M in the Banach space Cω(D) of real analytic maps
from D to Rn, such that ψ0 ∈ M and for all ψ ∈ M the map ψ : D 7→ int(D) also exhibits a
F.C.T. attractor.

We prove Theorem 1 in section 4.

We base our arguments on a result stated in Theorem 3.3 of this paper, which applies the
classical tools on Functional Analysis, dealing with non linear infinite dimensional submanifolds
of an abstract Banach space H. More precisely, in Theorem 3.3 we give necessary and sufficient
conditions to obtain codimension-one submanifolds of a functional Banach space H, where some
phenomenon appears, in terms of the persitence of the bifurcating quality of this phenomenon,
along one-parameter families in H.

The same arguments also work to prove the following second result:
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Theorem 2 If ψ0 verifies the hypothesis of Theorem 1 then ψ0 belongs to a one-parameter family
of real analytic maps in D such that at ψ0 there exists a global bifurcation from maps that pass
through a cascade of period doubling bifurcations to maps that pass through a sequence of homoclinic
tangencies bifurcations.

Even more, any one-parameter family that is transversal at ψ0 to the manifold M ⊂ Cω(D)
of the thesis of Theorem 1, has the property above.

We prove Theorem 2 in the last part of Section 4.

The result of Theorem 2, restricted to one-dimensional quadratic unimodal maps in the interval
that are near the standard F.C.T. map ϕ0 (see Definition 2.1), was first obtained in [6]. Afterwards,
the result was generalized to the disk in dimension n ≥ 2 in [12], but also, only for maps that are
in a small neighborhood of the standard F.C.T. map φ0 (see Definition 2.2).

As a consequence of Theorem 2, any ψ0 showing a F.C.T. attractor, even far from the standard
F.C.T. attractor, is the bifurcating map along any one-parameter family in Cω(D) transversal to
M. At one side of ψ0 the maps of the family exhibit sinks, in a cascade of period doubling
bifurcations, while at the other side they exhibit chaos (hyperbolic horseshoes, and also Hénon-
like attractors), due to the sequence of homoclinic bifurcations that accumulate on φ0 (see [13]).

The conclusion of the F.C.T as a generic route to chaos, is widely known and applied in other
sciences to physical autonomous dynamical systems, but no mathematical proof of it was known
before, in open sets of Cω(D), far away from the standard F.C.T. map.

Let us suggest that a similar result to that in the thesis of Theorem 1, can be obtained for
other kind of infinitely renormalizable diffeomorphisms or endomorphisms in n ≥ 2 dimensions. In
fact, instead of considering the classical standard F.C.T. map, we can look at other fixed map by
the doubling renormalization in the interval, with a non quadratic critical point or in the critical
circle ([14], [15]). We would define other classes of Cantor set attractors that are not the F.C.T.
attractor.

Provided that the unidimensional map fixed by the renormalization also has a local hyperbolic
behavior in the functional space ([14], [16]), it defines the corresponding endomorphisms in n ≥ 2
dimensions, fixed and locally hyperbolic by the renormalization, with the same arguments used
in [17].

Finally, the technique tools we use in this paper can be applied to a diffeomorphism ψ in n
dimensions, exhibiting the Cantor set attractor, but which is initially far away from that fixed
and locally hyperbolic endomorphism. We shall assume that its sequence of renormalized maps
converges to that fixed endomorphism, in the functional space. We note that the renormalization
is neither a linear operator nor a Fréchet differentiable transformation in the functional space.
Nevertheless, to construct a manifold M of the thesis of Theorem 1, where the infinitely renor-
malizable Cantor set attractor persists, the main arguments in [9] and in this paper can be applied.
We are aware that the theory does not hold in dimension one.

2 Definitions and previous results.

A analytic n-disk D, (or simply a disk ), is the image by a real analytic diffeomorphism of the
unit closed ball of Rn. (n ≥ 2). Note that we call real analytic diffeomorphism to a real analytic
transformation that is invertible and whose inverse is also a real analytic transformation.

Analogously a Cr −n−disk is the image by a Cr diffeomorphism of the unit closed ball of Rn.
All analytic disk is a Cr-disk.
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2.1 The standard Feigenbaum-Coullet-Tresser map in the interval.
We call the standard F.C.T. map in the interval, to the unique real analytic unimodal map

ϕ0 : [−1, 1] 7→ [−1, 1] such that ϕ0(0) = 1, ϕ′(0) = 0, ϕ′′0(0) < 0 and

ϕ0(1)−1 · ϕ0 ◦ ϕ0(ϕ0(1) · x) = ϕ0(x) ∀x ∈ [−1, 1]

The existence and unicity of ϕ0 was the central conjecture of the F.C.T. theory [1, 2, 3] and was
proved in [4, 5]. We denote λ to the number −ϕ0(1) = 0.3995 . . .. The map ϕ0 has a single fixed
point in [−1, 1], which is larger than λ. The analytic map ϕ0 is symmetric: ϕ0(x) = g0(x2) where
g0 is an analytic diffeomorphism from [0, 1] to [−λ, 1]. It can be analytically uniquely extended
to an open interval.

There exists one single periodic orbit of ϕ0 of period 2N for each natural N ≥ 0, and this
orbit is a hyperbolic repeller. The orbit of countably many points eventually fall on one of these
repellers. All the other orbits of ϕ0 are attracted to a Cantor set K in the interval which we call
the standard F.C.T. attractor in the interval.

Let n ≥ 2. Let D be n-dimensional compact disk containing the segment [−λ, 1] × {0}n−2 ×
[−λ, 1].

Definition 2.2 The standard Feigenbaum-Coullet-Tresser map in n-dimensions.
The map φ0 : D 7→ int(D) defined as

φ0(x1, x2, . . . , xn−1, xn) = (xn, 0, . . . , 0, ϕ0(xn)) = (xn, 0, . . . , 0, g0(x2
n))

for all x ∈ D, will be called the standard F.C.T. map in n dimensions. It inherits the Cantor set
attractor of the map ϕ0, that we call the standard F.C.T. attractor in n dimensions.

Remark 2.3 Observe that the standard F.C.T. map in n dimensions has a one dimensional
character: it is an endomorphism of D endowing it to a one-dimensional image, contained in its
interior, and following the graph of ϕ0.

The repellers of ϕ0 are transformed into periodic hyperbolic saddles of φ0 with infinite con-
traction along their stable manifolds. There exist such a periodic orbit with period 2N for each
natural N ≥ 0. The unstable manifolds of the saddles have dimension one and are contained in
φ0(D). The stable manifold of each saddle is the union of their pre-images by φ0, formed by the
intersection with D, of the horizontal (n− 1)-dimensional hyperplanes for which xn is constant.

All the orbits of φ0, except those in the stable manifolds of the saddles, are attracted to its
standard F.C.T. attractor.

We are interested in studying some Cantor set attractors for other n-dimensional maps, par-
ticularly for diffeomorphisms that might be far away from the standard F.C.T. map.

2.4 Functional spaces.
Given a analytic n-disk D, the space Cω(D) is the open set of the Banach space of the real

analytic maps ψ : D 7→ Rn, such that ψ(D) ⊂ int(D). The topology in Cω(D) is that given by
the supreme norm ‖ ψ ‖ = max{‖ψ(x)‖Rn : x ∈ D}.

Analogously the space Cr(D) is the open set of the Banach space of all the Cr maps ψ :
D 7→ Rn, such that ψ(D) ⊂ int(D). The topology in Cr(D) is that given by the supreme norm
‖ ψ ‖r = max{‖ψ(x)‖Rn , ‖Dψ(x)‖, ‖D2ψ(x)‖, . . . , ‖Drψ(x)‖ : x ∈ D}.

In some parts of this paper we will need to work with the whole Banach space of real analytic
maps, or of Cr maps, from D to Rn although their images are not contained in the interior of D.
We will still denote them as Cω(D) and Cr(D) , if there were no risk of confusion.
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Definition 2.5 Doubling renormalization.
A map ψ ∈ Cω(D) (ψ ∈ Cr(D)) is doubling renormalizable if there exists a analytic (resp. Cr)

n−disk D1 ⊂ intD such that:

ψ(D1) ∩ D1 = ∅

ψ2(D1) ⊂ int(D1)

If ψ is doubling renormalizable and ξ : D 7→ D1 is a real analytic (resp Cr) diffeomorphism
(called change of variables), the map Rψ defined as Rψ = ξ−1 ◦ ψ ◦ ψ ◦ ξ is a renormalized map
of ψ.

Note that doubling renormalizability is an open condition in Cω(D) (resp. Cr(D)). Also
note that Rψ is not uniquely defined: small perturbations of the change of variables ξ give other
renormalized map of ψ. When referring to the properties of Rψ we understand that there exists
some renormalized map of ψ having these properties.

By induction we define:
m-times doubling renormalizable maps.
A map ψ ∈ Cω(D) (resp. ψ ∈ Cr(D)) is m-times (doubling) renormalizable if it is m−1-times

(doubling) renormalizable and its m − 1-renormalized Rm−1ψ is doubling renormalizable. It is
defined a m-renormalized map of ψ as Rmψ = RRm−1ψ

Infinitely doubling renormalizable maps.
A map ψ ∈ Cω(D) (resp. ψ ∈ Cr(D)) is infinitely (doubling) renormalizable if it is m-times

(doubling) renormalizable for all natural m.

The main example of infinite doubling renormalizable maps in the n-disk is the fixed map
standard F.C.T. endormorphism φ0, defined in 2.2.

Remark 2.6 An infinitely (doubling) renormalizable diffeomorphism or endormorphism ψ ∈
Cω(D) (resp. Cr(D)) in the n−disk D, may in general be far away from the stardard F.C.T.
endormorphism φ0. Nevertheless its sequence, or some subsequence, of some renormalized maps
Rnψ may converge to φ0 in the Cω(D) (resp. Cr(D)) topology. If this happens, roughly speaking
ψ exhibits a Cantor set attractor, that assympthotically inside, looks like the standard F.C.T.
attractor. In more precise words, this is the statement of the following theorem:

Theorem 2.7 If a map ψ ∈ Cω(D) (resp. ψ ∈ Cr(D)) is infinitely doubling renormalizable and
if there is a sequence Rjψ of j−times renormalizations of ψ such that

lim
j→∞

Rjψ = φ0

in Cω(D) (resp. in Cr(D)), where φ0 is the F.C.T. map in n− dimensions, then there exists a
minimal Cantor set K ∈ int(D) such that ψ(K) = K, there exits a nighborhood U ⊂ int(D) of K
such that K attracts almost all the orbits in U and there exists a single periodic saddle orbit in U
of period 2N for all natural number N large enough.

Proof: See Theorem 2.12 of [9] for the proof in Cr(D). Exactly the same arguments of the proof
in Cr(R) work in Cω(D), due that the topology of Cω(D) is induced from the Cr(D) topology.
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Definition 2.8 The F.C.T. attractor.
A map ψ ∈ Cω(D) (resp. ψ ∈ Cr(D)) from the n− dimensional disk D to its interior has a

real analytic F.C.T. attractor if ψ is infinitely doubling renormalizable and there is a sequence
Rjψ of j−times renormalizations of ψ, such that

Rjψ j→∞ → φ0

in Cω(D) (resp. in Cr(D)), where φ0 is the standard F.C.T. map in n− dimensions.

Remark 2.9 The Cantor set attractor K of Theorem 2.7 and Definition 2.8 has bounded geome-
try in the sense that the diameter of the connected compact atoms that asymptotically define K,
decrease with an asymptotic rate below 1. When looking microscopically the decreasing rate, it
tends to the number λ = 0.3995 . . ., that is a spatial universal constant defined for the standard
F.C.T map φ0. In fact, λ is the contraction rate of the change of variables to renormalize φ0,
and it is also the asymptotic contraction rate of the change of variables to pass from the Rjψ to
Rj+1ψ, if ψ verifies the Definition 2.8.

We note that Gambaudo and Tresser in [18] give an example of a n dimensional infinitely
renormalizable map whose renormalized maps do not converge to the F.C.T. map φ0. In spite
of that, this example has a Cantor set attractor that verifies the thesis of the theorem 2.7. Its
geometry is also bounded, but the bounds are different from λ. We do not call that Cantor set a
F.C.T. attractor.

Let us recall some results from [9] in which we will found part of the proofs of Theorems 1
and 2:

Theorem 2.10 For r ≥ 8, if ψ0 ∈ Cr(D) has a F.C.T. attractor, then there exists a local
codimension-one C1 manifold M in Cr(D) such that ψ0 ∈ M and χ has a F.C.T. attractor for
all χ ∈M.

Proof: See Theorem 2 of [9].

Theorem 2.11 For r ≥ 8, if ψ0 ∈ Cr(D) has a F.C.T. attractor, then any C1 one-parameter
family Ψ = {ψt}t∈[−1,1] ⊂ Cr(D) transversal to the manifold M of Theorem 2.10 at ψ0, exhibits,
at one side of t = 0 a sequence of period doubling bifurcations from sinks of period 2N (for any
sufficiently large natural number N) to saddles of the same period and sinks of double period; and
exhibits, at the other side of t = 0, a sequence of homoclinic tangency bifurcations of saddles of
period 2N (for any sufficiently large natural number N).

Proof: See Corollary 4 of [9].

3 Characterization of codimension-one submanifolds in abstract
Banach spaces.

We recall the following definitions, and the we state a theorem dealing with the differentiable
submanifolds of codimension one, in abstract Banach spaces:

Definition 3.1 (The Banach space of C1 one-parameter families.) Let H be a Banach
space and let Ψ = {ψt}t∈[−1,1] be a C1 one-parameter family in H, i.e. Ψ is a C1 application
taking t ∈ [−1, 1] to ψt ∈ H. We denote as ∂ψt/∂t ∈ H to the derivative respect to t of the
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application t 7→ ψt ∈ H. The set F = C1([−1, 1],H) of all C1 one-parameter families in H is a
Banach space with the C1 topology derived from the following C1 norm

‖Ψ‖F = max{‖ψt‖H , ‖∂ψt/∂t‖H : t ∈ [−1, 1]}

We denote Bε(Ψ) to the open ball in F centered at Ψ and with radius equal to ε > 0.
Given a C1 one parameter family Ψ = {ψt}t∈[−1,1]] ∈ F and given a fixed real number t0 such

that |t0| ≤ 1 we construct new families (many) in F denoted as (t0)∗Ψ defined as:

(t0)∗Ψ = {ψ̂t}t∈[−1,1] ∈ F, where ψ̂t = ψt+t0 if t ∈ [−1, 1], t + t0 ∈ [−1, 1]

Note that, to define (t0)∗Ψ = {ψ̂t}t∈[−1,1] = {ψt+t0}t∈[−1,1], it is required to choose any C1-
extension of ψt+t0 , for the values of t ∈ [−1, 1] such that t + t0 6∈ [−1, 1].

Definition 3.2 (Persistent phenomena in C1 one-parameter families.)
Let H be a Banach space, let P be any non empty subset of H, and let Ψ = {ψt}t∈[−1,1] ∈ F

be a C1 one-parameter family in H such that ψ0 ∈ P.
We say that the set P (or the phenomenon P) is persistent in C1 one-parameter families

near Ψ if there exist ε > 0 and a C1 real function a : Bε(Ψ) ⊂ F 7→ [−1, 1] such that for all
Γ = {γt}t∈[−1,1] ∈ Bε(Ψ) ⊂ F :

a) γa(Γ) ∈ P
b) If γ0 = ψ0 then a(Γ) = 0. (In particular a(Ψ) = 0.)

c) If |t0| is small enough then a((t0)∗Γ) = a(Γ)− t0. (In particular a((t0)∗Ψ) = −t0.)

To explicit the value of ε in this definition we will refer to the set P as being ε−persistet in C1

one-parameter families near Ψ.

Theorem 3.3 Let H be a Banach space, let P be any non empty subset of H and let ψ0 ∈ P.
The following assertions are equivalent:

i) There exists a C1 local manifold M in H with codimension one such that ψ0 ∈ M and
χ ∈ P for all χ ∈M.

ii) There exists a C1 one-parameter family Ψ = {ψt}t∈[−1,1] passing through ψ0 for t = 0
and such that the set P is persistent in C1 one-parameter families near Ψ (according with
definition 3.2).

iii) There exists v0 ∈ H such that the set P is persistent in C1 one-parameter families near
Ψ = {ψ0 + tv0}t∈[−1,1] (according with definition 3.2).

Proof:
We first prove that i) implies ii):
We apply the C1 persistence of the transversal intersection between C1 manifolds in H (see

[19]): Being M a codimension one, C1 manifold o H passing through ψ0, it is locally characterized
by a real equation b(χ) = 0 in a neighborhood of radius δ > 0 of ψ0 ∈ H:

M = {χ ∈ H : ‖χ− ψ0‖H < δ, b(χ) = 0}

where b : {χ ∈ H : ‖χ − ψ0‖H < δ} 7→ R is some real function of C1 class and with surjective
derivative.
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Let v0 ∈ H be transversal to M at ψ0. That is

Dbψ0 · v0 6= 0

If ‖v0‖H > 0 is small enough, then the family Ψ = {ψt}t∈[−1,1] = {ψ0 + tv0}t∈[−1,1] ∈ F verifies
‖ψt − ψ0‖H < δ for all t ∈ [−1, 1].

Taking a smaller positive value for δ, let us define the transformation G : Bδ(Ψ)× [−1, 1] such
that, if Γ = {γt}t∈[−1,1] ∈ Bδ(Ψ) ⊂ F and if t ∈ [−1, 1], then:

G(Γ, t) = b(γt)

The transformation G is C1 because it is the composition of the C1 real function b with the
parameter evaluation γt of the C1 parameter family Γ.

As ψ0 ∈M we have

G(Ψ, 0) = 0,
∂G

∂t

∣∣∣∣
Γ=Ψ,t=0

= Db|ψ0 · v0 6= 0

Then, by the implicit function theorem there exists ε > 0 and a : Bε(Ψ) ⊂ F 7→ [−1, 1] of C1

class, such that
G(Γ, a(Γ)) = 0

Thus b(γa(Γ)) = 0. Therefore γa(Γ) ∈ M ⊂ P. We conclude that the C1 real function a verifies
condition a) of Definition 3.2.

The Implicit Function Theorem also asserts that if G(Γ, a) = 0 for some Γ ∈ Bε(Ψ) and some
a with |a| small enough, then a = a(Γ). This last assertion proves that the real function a verifies
also conditions b) and c) of Definition 3.2, as wanted.

Let us now prove that ii) implies iii):
Let Ψ = {ψt}t∈[−1,1] ∈ F be the C1 one-parameter family given in ii) and ε > 0 the real

number given in the definition 3.2 of persistence of P in one-parameter families near Ψ. Let us
call v0 = (∂ψ/∂t)|t=0. The C1 condition of Ψ implies that there exists 0 < δ < 1 such that for
|t| ≤ δ:

‖ψ0 + tv0 − ψt‖H < ε/2, ‖∂ψt

∂t
− v0‖H < ε/2

Take any C1 extension ρ = {ρt}t∈[−1,1] ∈ F of {ψ0 + tv0}t∈[−δ,δ] such that ρ ∈ Bε/2(Ψ) ⊂ F .
As the phenomenon P is ε−persistent in C1 one parameter families near Ψ, and ρ is ε/2−near

Ψ, we obtain that P is ε/2 persistent in C1 one parameter families near ρ.
Now we shall construct a family Λ ∈ F to be linear on the parameter t ∈ [−1, 1] as in the

thesis iii), from ρ ∈ F . (The one parameter family ρ is linear only in the small δ- neighborhood
of the parameter value t = 0.)

Consider Λ = {λt}t∈[−1,1] ⊂ F defined as λt = ψ0 + δtv0 for all t ∈ [−1, 1].
As ρ0 = ψ0 then a(ρ) = 0. By continuity of the function a there exists ε′ such that 0 < ε′ < ε/2

and |a(Γ̃)| < δ/2 if ‖Γ̃− ρ‖F < ε′.
Take ε′′ = ε′δ. It is enough to prove that the phenomenon P is ε′′ persistent in C1 one-

parameter families near Λ.
In fact, for all Γ = {γt}t∈[−1,1] ∈ Bε′′(Λ) ⊂ F we have

‖γt − (ψ0 + δtv0)‖H < ε′′ = ε′δ < ε′ (1)
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∥∥∥∥
∂γt

∂t
− δv0

∥∥∥∥
H

< ε′′ = ε′δ,
∥∥∥∥
1
δ

∂γt

∂t
− v0

∥∥∥∥
H

< ε′ (2)

Observe that ρt = λt/δ = ψ0 + tv0 for |t| ≤ δ. Analogously, for Γ = {γt}t∈[−1,1] ∈ Bε′′(Λ) ⊂ F

define γ̃t = γt/δ for |t| ≤ δ, and consider any C1 extension Γ̃ = {γ̃t}t∈[−1,1] ∈ F .
Using inequalities (1) and (2) we check that γ̃t is C1ε′−near ρ for parameter values |t| ≤ δ,

and so the extension Γ̃ ∈ F to the whole parameter domain t ∈ [−1, 1] could be chosen such that
Γ̃ ∈ Bε′(ρ) ⊂ F .

The ε′−persistence of the phenomenon P in one-parameter families near ρ, for the chosen value
of ε′ < ε/2, allows the existence of a C1 function ã : Bε′ 7→ [−δ/2, δ/2] verifying the conditions of
the definition 3.2.

As the values of ã are contained in the δ/2-neighborhood of 0 in the parameter domain, we
have that γ̃ã(Γ̃) = γã(Γ̃)/δ ∈ P. The map ã depends on the given Γ ∈ Bε′′(Λ) and is independent

on the choice of the extension Γ̃ for parameter values outside [−δ, δ].
Define a(Γ) = ã(Γ̃)/δ. It is straightforward to check that the real function a verifies the

conditions of the definition 3.2

Finally let us prove that iii) implies i):
Let Ψ = {ψ0 + tv0}t∈[−1,1] ∈ F be the one-parameter family given in the hypothesis (iii).

Let ε > 0 be the radius of the ball centered at Ψ in F , where the C1-real function a is defined,
according to Definition 3.2 of persistence of the phenomenon P.

Let us choose δ > 0 such that if ‖χ− ψ0‖H < δ then

Γ(χ) = {χ + tv0}t∈[−1,1] ∈ Bε(Ψ) ⊂ F (3)

Let us define b : Bδ(ψ0) ⊂ H 7→ [−1, 1] as

b(χ) = a(Γ(χ))

By construction we have b(ψ0) = 0 and

b(χ) = 0 ⇒ χ ∈ P

Our aim is to prove that the set M⊂ H, defined as

M = {χ ∈ Bδ(ψ0) ⊂ H : b(χ) = 0},

is an embedded C1 local manifold. It is immediate that ψ0 ∈ M. It is enough to prove that the
real function b is of C1- class and that its derivative at χ = ψ0 ( Db(ψ0) : H 7→ R) is surjective.

First, the function b is the composition b(χ) = a ◦ Γ(χ). As a : Bε(Ψ) ⊂ F 7→ R is of C1 class
by assumption, it is left to prove that Γ : Bδ(ψ0) ⊂ H 7→ Bε(Ψ) ⊂ F defined in (3) is differentiable
with continuous derivative.

Let us take ∆χ ∈ H such that χ + ∆χ ∈ Bδ(ψ0). From (3) the increment of the function Γ in
χ is

Γ(χ + ∆χ)− Γ(χ) = {∆χ}t∈[−1,1] ∈ F

In other words, the increment of Γ is ∆Γ = i(∆χ), where i is the inclusion defined as follows:

i : H ↪→ F such that ∀γ ∈ H : i(γ) = {γt}t∈[−1,1] ∈ F where γt = γ ∀t ∈ [−1, 1]
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As the inclusion i : H ↪→ F is linear and continuous, then the map Γ : Bδ(ψ0) ⊂ H 7→ Bε(Ψ) ⊂
F defined in (3) is of C1 class as wanted.

Finally, it is left to prove that Db(Ψ0) : H 7→ R is surjective. It is enough to prove that it is
not null the directional derivative of the real function b : Bδ(ψ0) ⊂ H 7→ R along the direction
v0 ∈ H at ψ0. (Note that although it was not asked v0 6= 0 in the hypothesis iii), the assertion
above also proves that iii) implies v0 6= 0.)

In fact, for any real number λ sufficiently small in absolute value so that ψ0+λv0 ∈ Bδ(ψ0) ⊂ H,
we have:

b(ψ0 + λv0) = a({ψ0 + λv0 + tv0}t∈[−1,1]) = a(λ∗Ψ) = a(Ψ)− λ = −λ

Therefore
d

dλ
b(ψ0 + λv0) =

d

dλ
(−λ) = −1 6= 0

4 Conclusion of the main results: Theorems 1 and 2.

Proof of Theorem 1: Let P be the set of transformations exhibiting a F.C.T. attractor in
Cr(D) ⊂ Cω(D). Let ψ0 ∈ P ∩ Cω(D).

Let F r be the space of C1 one-parameter families of maps in Cr(D) and let Fω be the space
of C1 one-parameter families of maps in Cω(D). We have that Fω ⊂ F r and the topology in Fω

defined in 3.1 is the induced topology from F r.
Due to Theorem 2.10 and Lemma 3.3 there exists v0 ∈ Cr(D) such that the phenomenon P is

persistent in one-parameter families in F r near Ψ = {ψ0 + tv0}t∈[−1,1]. Let ε > 0 be the number
of the definition 3.2.

As Cω(D) is dense in Cr(D) there exists w0 ∈ Cω(D) such that ‖w0 − v0‖Cr(D) < ε/2. Define
the one-parameter family Ψ̃ ∈ Fω as follows: Ψ̃ = {ψ0 + tw0}t∈[−1,1].

We obtain now that the phenomenon P is persistent in one parameter families of F r near Ψ̃,
taking ε/2 instead of ε in the definition 3.2. Restricting to the subspace Fω we conclude that the
phenomenon P ∩ Cω(D) is persistent in one parameter families of Fω near Ψ̃. Finally, applying
Lemma 3.3 again, we obtain that there exists in Cω(D) the local codimension one manifold M of
maps in P ∩ Cω(D) as wanted.

Proof of Theorem 2: We denote F r and Fω as in the last proof. Applying Theorem 2.11
all one-parameter family Ψ ∈ F r that is transversal to the local codimension one manifold M
of maps exhibiting a F.C.T. attractor in Cr(D) verifies the thesis of Theorem 2. As in the last
proof, the density of Cω(D) in Cr(D) implies that there exists a one-parameter family Ψ̃ ∈ Fω

transversal to M in Cr(D), and thus, verifying the thesis.
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