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Abstract

For any continuous map f : M → M on a compact manifold M , we define
the SRB-like probabilities as a generalization of Sinai-Ruelle-Bowen (i.e. physical)
measures. We prove that f has SRB-like measures, even if SRB measures do not
exist. We prove that the definition of SRB-like measures is optimal, provided that
the purpose of the researcher is to describe the asymptotic statistics for Lebesgue
almost every initial state. We prove that any isolated measure in the set O of SRB-
like measures is SRB. Finally we conclude that if O is finite or countable infinite,
then there exist (up to countable many) SRB measures such that the union of their
basins cover M Lebesgue a.e.

MSC2010: Primary 37A05; Secondary 28D05

Keywords: Observable measures, SRB measures, physical measures.

1 Introduction

Let f : M → M be a continuous map in a compact, finite-dimensional manifold M .

Let m be a Lebesgue measure normalized so that m(M) = 1, and not necessarily f -

invariant. We denote P the set of all Borel probability measures in M , provided with

the weak∗ topology, and a metric structure inducing this topology.

For any point x ∈ M we denote pω(x) to the set of all the Borel probabilities in

M that are the limits in the weak∗ topology of the convergent subsequences of the

following sequence  1
n

n−1∑
j=0

δfj(x)


n∈N

(1.1)

where δy is the Dirac delta probability measure supported in y ∈ M . We call the

probabilities of the sequence (1.1) empiric probabilities of the orbit of x. We call pω(x)

the limit set in P corresponding to x ∈M .

It is classic in Ergodic Theory the following definition:
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Definition 1.1 A probability measure µ is physical or SRB (Sinai-Ruelle-Bowen), if

{µ} = pw(x) for a set A(µ) of points x ∈M that has positive Lebesgue measure. The

set A(µ) is called basin of attraction of µ.

In this paper, as in [V98] and Chapter 11 of [BDV05], we agree to name such a

probability µ an SRB measure (and also physical as in [Y02]). This preference is based

in three reasons, which are also our motivations:

1. Our scenario includes all the continuous systems. Most (namely C0 generic) contin-

uous f are not differentiable. So, no Lyapunov exponents necessarily exist, to be able

to assume some kind of hyperbolicity. Thus, we can not assume the existence of an

unstable foliation with differentiable leaves. Therefore, we aim to study those systems

for which the SRB measures usually defined in the literature (related with an unstable

foliation F), do not exist. We recall a popularly required property for µ: the condi-

tional measures µx of µ, along the local leaves Fx of a hyperbolic unstable foliation

F , are absolute continuous respect to the internal Lebesgue measures of those leaves.

But this latter assumption needs the existence of such a regular foliation F . It is well

known that the ergodic theory based on this absolute continuity condition does not

work for generic C1 systems (that are not C1+α), see [RY80, BH98, AB07]. So, it does

not work for most C0-systems.

2. In the modern Differentiable Ergodic Theory, for C1+α-systems that have some

hyperbolic behavior, one of the ultimate purposes of searching measures with absolute

continuity properties respect to Lebesgue is to find probabilities that satisfy Definition

1.1. Therefore, if the system is not C1+α, or is not hyperbolic-like, but nevertheless

exists some probability µ describing the asymptotic behavior of the sequence (1.1) for

a Lebesgue-positive set of initial states (i.e. µ satisfies Definition 1.1), then one of the

initial purposes of research of Sinai, Ruelle and Bowen in [B71, BR75, R76, S72], is

also achieved. Therefore, it makes sense (principally for C0-systems) to call µ an SRB

measure, if it satisfies Definition 1.1.

3. The SRB-like property of some invariant measures which describe (modulus ε for all

ε > 0) the behavior of the sequence (1) for n large enough and for a Lebesgue-positive

set of initial states can be also achieved considering the observable measures that we

introduce in Definition 1.2, instead of restricting to those in Definition 1.1. This new

setting will describe the statistics defined by the sequence (1.1) of empiric probabilities

for Lebesgue almost all initial state (see Theorem 1.5). This is particularly interesting

in the cases in which SRB-measures do not exist (for instance [K04] and some of the

examples in Section 5 of this paper.) So, in the sequel, we use the words physical

and SRB as synonymous, and we apply them only to the probability measures that

satisfy Definition 1.1. To generalize this notion, we will call observable or SRB-like or
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physical-like, to those measures introduced in Definition 1.2. After this agreement all

SRB measure are SRB-like but not conversely (we provide Examples in Section 5).

One of the major problems of the Ergodic Theory of Dynamical Systems, is to

find SRB measures. They are widely studied occupying a relevant interest for those

systems that are C1+α and show some kind of hyperbolicity ([PS82], [PS04], [V98],

[BDV05]). One of the reasons for searching those measures, is that they describe the

asymptotic behavior of the sequence (1.1) for a Lebesgue-positive set of initial states,

namely, for a set of spatial conditions that is not negligible from the viewpoint of an

observer. One observes, through the SRB measures, the statistics of the orbits through

experiments that measure the time-mean of the future evolution of the system, with

Lebesgue almost all initial states. But it is unknown if most differentiable systems

exhibit SRB measures ([P99]). It seems to be true that most C0-systems do not exhibit

SRB measures, because for them, there is evidence that Lebesgue almost all initial

states define non convergent sequences (1.1) of empiric probabilities [AA10]. In [K98],

Keller considers an SRB-like property of a measure, even if the sequence (1.1) is not

convergent. In fact, he takes those measures µ that belong to the set pw(x) for a

Lebesgue-positive set of initial states x ∈M , regardless if pw(x) coincides or not with

{µ}. Precisely, Keller considers those measures µ for which dist(µ, pw(x)) = 0 for a

Lebesgue positive set of points x ∈ M . But, as he also remarks in his definition, that

kind of weak-SRB measures may not exist. We introduce now the following notion,

which generalizes the notion of observability of Keller, and the notion of SRB measures

in Definition 1.1:

Definition 1.2 A probability measure µ ∈ P is observable or SRB-like or physical-like

if for all ε > 0 the set Aε(µ) = {x ∈ M : dist (pω(x), µ) < ε} has positive Lebesgue

measure. The set Aε(µ) is called basin of ε-attraction of µ. We denote with O the set

of all observable measures.

It is immediate from Definitions 1.1 and 1.2, that every SRB measure is observable.

But not every observable measure is SRB (we provide examples in Section 4). It is

standard to check that any observable measure is f -invariant. (In fact, if Pf ⊂ P
denotes the weak∗-compact set of f -invariant probabilities, since pω(x) ∈ Pf for all x,

we conclude that µ ∈ Pf = Pf for all µ ∈ O.)

For the experimenter, the observable measures as defined in 1.2 should have the

same relevance as the SRB measures defined in 1.1. In fact, the basin of ε-attraction

Aε(µ) has positive Lebesgue measure for all ε > 0. The ε-approximation lays in

the space P of probabilities, but it can be easily translated (through the functional

operator induced by the probability µ in the space C0(M,R)) to an ε-approximation

(in time-mean) towards an “attractor” in the ambient manifold M . Precisely, if µ is
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observable and x ∈ Aε(µ) then, with a frequency that is near 1, the iterates fn(x),

for certain values of n large enough, will ε-approach the support of µ. Note that also

for an SRB measure µ this ε-approximation to the support of µ holds in the ambient

manifold M with ε 6= 0. Namely, assuming that there exists an SRB measure µ, the

empiric probability (defined in (1.1) for Lebesgue almost all orbit in the basin of µ)

approximates, but in general differs from µ, after any time n ≥ 1 of experimentation

which is as large as wanted but finite. If the experimenter aims to observe the orbits

during a time n large enough, but always finite, Definition 1.2 of observability ensures

him a 2ε-approximation to the “attractor”, for any given ε > 0, while Definition 1.1

of physical measures ensures him an ε-approximation. As none of them guarantees a

null error, and both of them guarantee an error smaller than ε > 0 for arbitrarily small

values of ε > 0 (if the observation time is large enough), the practical meanings of both

definitions are similar.

Statement of the results

Main Theorem 1.3 (Existence of observable measures)

For every continuous map f , the space O of all observable measures for f is

nonempty and weak∗-compact.

We prove this theorem in Section 3. It says that Definition 1.2 is weak enough to

ensure the existence of observable measures for any continuous f . But, if considering the

set Pf of all the invariant measures, one would obtain also the existence of probabilities

that describe completely the limit set pw(x) for a Lebesgue-positive set of points x ∈M
(if so, for all points in M). Nevertheless, that would be less economic. In fact, along

Section 5, we exhibit paradigmatic systems for which most invariant measures are not

observable. Also we show that observable measures (as well as SRB measures defined

in 1.1) are not necessarily ergodic. The ergodic measures, or a subset of them, may be

not suitable respect to a non-invariant Lebesgue measure describing the probabilistic

distribution of the initial states in M . In fact, there exist examples (we will provide

one in Section 5), for which the set of points x ∈ M such that pω(x) is an ergodic

probability has zero Lebesgue measure.

In Definition 1.1, we called basin of attraction A(µ) of an SRB-measure µ to the set

A(µ) = {x ∈ X : pω(x) = {µ} }. Inspired in that definition we introduce the following:

Definition 1.4 We call basin of attraction A(K) of any nonempty weak∗ compact

subset K of probabilities, to

A(K) := {x ∈M : pω(x) ⊂ K}.
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We are interested in those sets K ⊂ P having basin A(K) with positive Lebesgue

measure. We are also interested in not adding unnecessary probabilities to the set K.

The following result states that the optimal choice, under those interests, is a nonempty

compact subset of the observable measures defined in 1.2.

Main Theorem 1.5 (Full optimal attraction of O)

The set O of all observable measures for f is the minimal weak∗ compact subset of

P whose basin of attraction has total Lebesgue measure. In other words, O is mini-

mally weak∗ compact containing, for Lebesgue almost all initial state, the limits of the

convergent subsequences of (1.1).

We prove this theorem in Section 3. Finally, let us state the relations between the

cardinality of O and the existence of SRB measures according with Definition 1.1.

Theorem 1.6 (Finite set of observable measures) O is finite if and only if there

exist finitely many SRB measures such that the union of their basins of attraction cover

M Lebesgue a.e. In this case O is the set of SRB measures.

We prove this theorem in Section 4.

Theorem 1.7 (Countable set of observable measures) If O is countably infinite,

then there exist countably infinitely many SRB measures such that their basins of at-

traction cover M Lebesgue a.e. In this case O is the weak∗-closure of the set of SRB

measures.

We prove this theorem in Section 4.

For systems preserving the Lebesgue measure the main question is their ergodicity,

and most results of this work translate, for those systems, as equivalent conditions to

be ergodic. The proof of the following result is standard after Theorem 1.5:

Remark 1.8 (Observability and ergodicity.) If f preserves the Lebesgue measure

m then the following assertions are equivalent:

1. f is ergodic respect to m.

2. There exists a unique observable measure µ for f .

3. There exists a unique SRB measure ν for f attracting Lebesgue a.e.

Moreover, if the assertions above are satisfied, then m = µ = ν

The ergodicity of most maps that preserve the Lebesgue measure is also an open

question. ([PS04], [BMVW03]). Due to Remark 1.8 this open question is equivalent to

the unique observability.
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2 The convex-like property of pω(x).

For each x ∈ M we have defined the nonempty compact set pω(x) ⊂ Pf composed by

the limits of all the convergent subsequences of the empiric probabilities in Equality

(1.1). For further uses we state the following property for the pω-limit sets:

Theorem 2.1 (Convex-like property.) For every point x ∈M :

1. If µ, ν ∈ pω(x) then for each real number 0 ≤ λ ≤ 1 there exists a measure µλ ∈ pω(x)

such that dist (µλ, µ) = λ dist (ν, µ).

2. pω(x) either has a single element or non-countable infinitely many.

Proof:

The statement 2 is an immediate consequence of 1. To prove 1 it is enough to

exhibit, in the case µ 6= ν, a convergent subsequence of (1.1) whose limit µλ satisfies 1.

It is an easy exercise to observe that the existence of such convergent sequence follows

(just taking ε = 1/n) from the following lemma 2.2. �

Lemma 2.2 For fixed x ∈ M and for all n ≥ 1 denote µn = 1
n

∑n−1
j=0 δfj(x). Assume

that there exist two weak∗-convergent subsequences µmj → µ, µnj → ν. Then, for

all ε > 0 and all K > 0 there exists a natural number h = h(ε,K) > K such that

| dist (µh, µ)− λ dist (ν, µ)| ≤ ε.

Proof: First let us choose mj and then nj such that

mj > K;
1
mj

<
ε

4
; dist (µ, µmj ) <

ε

4
; nj > mj ; dist (ν, µnj ) <

ε

4
.

We will consider the following distance in P:

dist (ρ, δ) =
∞∑
i=1

1
2i

∣∣∣∣∫ gi dρ−
∫
gi dδ

∣∣∣∣
for any ρ, δ ∈ P, where {gi}i∈N is a countable dense subset of C0(M, [0, 1]). Note from

the sequence (1.1) that |
∫
g dµn −

∫
g dµn+1| ≤ (1/n)||g|| for all g ∈ C(M, [0, 1]) and

all n ≥ 1. Then in particular for n = mj + k, we obtain

dist (µmj+k, µmj+k+1) ≤ 1
mj

<
ε

4
for all k ≥ 0 (2.1)

Now let us choose a natural number 0 ≤ k ≤ nj −mj such that∣∣ dist (µmj , µmj+k)− λ dist (µmj , µnj )
∣∣ < ε/4 for the given λ ∈ [0, 1]

Such k does exist because inequality (2.1) is verified for all k ≥ 0 and moreover if k = 0

then dist (µmj , µmj+k) = 0 and if k = nj−mj then dist (µmj , µmj+k) = dist (µmj , µnj ).
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Now renaming h = mj + k, applying the triangular property and tying together the

inequalities above, we deduce:

|dist (µh, µ)− λ dist (ν, µ)| ≤
∣∣dist (µh, µ)− dist (µh, µmj )

∣∣
+
∣∣ dist (µh, µmj )− λ dist (µmj , µnj )

∣∣+ λ
∣∣dist (µmj , µnj )− dist (µmj , ν)

∣∣
+λ
∣∣dist (µmj , ν)− dist (µ, ν)

∣∣ < ε

�

3 Proof of Theorems 1.3 and 1.5.

From the beginning we have fixed a metric in the space P of all Borel probability

measures in M , inducing its weak∗ topology structure. We denote as Bε(µ) the open

ball in P, with such a metric, centered in µ ∈ P and with radius ε > 0.

Proof: (of Theorem 1.3.) Let us prove that O is compact. The complement Oc

of O in P is the set of all probability measures µ (not necessarily f -invariant) such

that for some ε = ε(µ) > 0 the set {x ∈ M : pω(x) ∩ Bε(µ) 6= ∅} has zero Lebesgue

measure. Therefore Oc is open in P, and O is a closed subspace of P. As P is compact

we deduce that O is compact as wanted.

We now prove that O is not empty. By contradiction, assume that Oc = P. Then

for every µ ∈ P there exists some ε = ε(µ) > 0 such that the set A = {x ∈ M :

pω(x) ⊂ (Bε(µ))c} has total Lebesgue probability. As P is compact, let us consider a

finite covering of P with such open balls Bε(µ), say B1, B2, . . . Bk, and their respective

sets A1, A2, . . . Ak defined as above. As m(Ai) = 1 for all i = 1, 2, . . . , k we have that

the intersection B = ∩ki=1Ai is not empty. By construction, for all x ∈ B the pω-limit

of x is contained in the complement of Bi for all i = 1, 2 . . . , k, and so it would not be

contained in P, that is the contradiction ending the proof. �

Proof: (of Theorem 1.5.) Recall Definition 1.4 of the basin of attraction A(K) of

any weak∗-compact and nonempty set K of probabilities. We must prove the following

two assertions:

1. m(A(O)) = 1, where m is the Lebesgue measure.

2. O is minimal among all the compact sets K ⊂ P with such a property.

Define the following family ℵ of sets of probabilities:

ℵ = {K ⊂ P : K is compact and m(A(K)) = 1}.

Therefore ℵ is composed by all the weak∗ compact sets K of probabilities such that

pω(x) ⊂ K for Lebesgue almost every point x ∈ M . The family ℵ is not empty since

it contains the set Pf of all the invariant probabilities. So, to prove Theorem 1.5, we

must prove that O ∈ ℵ and O =
⋂
K∈ℵK.

7



Let us first prove that O ⊂ K for all K ∈ ℵ. This is equivalent to prove that if

K ∈ ℵ and if µ 6∈ K then µ 6∈ O.

If µ 6∈ K take ε = dist (µ,K) > 0. For all x ∈ A(K) the set pω(x) ⊂ K is

disjoint from the ball Bε(µ). But almost all Lebesgue point is in A(K), because K ∈ ℵ.

Therefore pω(x)∩Bε(µ) = ∅ Lebesgue a.e. This last assertion, combined with Definition

1.2 and the compactness of the set pω(x) imply that µ 6∈ O, as wanted.

Now let us prove that m(A(O)) = 1. After Theorem 1.3 the set O is compact and

nonempty. So, for any µ 6∈ O the distance dist (µ,O) is positive. Observe that the

complement Oc of O in P can be written as the increasing union of compacts sets Kn
(not in the family ℵ) as follows:

Oc =
∞⋃
n=1

Kn, Kn = {µ ∈ P : dist (µ,O) ≥ 1/n} ⊂ Kn+1 (3.1)

Let us consider the sequence A′n = A′(Kn) of sets in M , where A′(K) is defined as

follows:

A′(K) := {x ∈M : pω(x) ∩ K 6= ∅}. (3.2)

Denote A′∞ = A′(Oc). We deduce from (3.1) and (3.2) that:

A′∞ =
∞⋃
n=1

A′n, m(A′n)→ m(A′∞) = m(A′(Oc)).

To end the proof is now enough to show that m(A′n) = 0 for all n ∈ N.

In fact, A′n = A′(Kn) and Kn is compact and contained in Oc. By Definition 1.2

there exists a finite covering of Kn with open balls B1,B2, . . . ,Bk such that

m(A′(Bi)) = 0 for all i = 1, 2, . . . , k (3.3)

By (3.2) the finite collection of sets A′(Bi); i = 1, 2, . . . , k cover A′n and therefore (3.3)

implies m(A′n) = 0 ending the proof. �

4 Proof of Theorems 1.6 and 1.7

To prove Theorems 1.6 and 1.7 we need the following Lemma:

Lemma 4.1 If an observable or SRB-like measure µ is isolated in the set O of all

observable measures, then it is an SRB measure.

Proof: Recall that we denote Bε(µ) the open ball in P centered in µ ∈ P and with

radius ε > 0. Since µ is isolated in O, there exists ε0 > 0 such that the set Bε0(µ) \{µ}
is disjoint from O. After Definition 1.2, m(A) > 0, where A := Aε0(µ) = {x ∈ M :

dist(pω(x), µ) < ε0}.
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After Definition 1.1, to prove that µ is SRB it is enough to prove that for m-almost all

x ∈ A the limit set pω(x) of the sequence (1.1) of empiric probabilities, is {µ}. In fact,

fix and arbitrary 0 < ε < ε0. The compact set Bε0(µ)\Bε(µ) is disjoint from O, then it

can be covered with a finite number of open balls B1,B2, . . . ,Bk such that m(Ai) = 0

for all i = 1, . . . , k, where Ai := {x ∈M : pω(x)∩Bi 6= ∅}. Thus, for m-a.e. x ∈ A the

limit set pω(x) intersects Bε(µ) but it does not intersect Bε0(µ)\Bε(µ). After Theorem

2.1, we conclude that pω(x) ⊂ Bε(µ) for Lebesgue almost all x ∈ A. Taking the values

εn = 1/n, for all n ≥ 1, we deduce that pω(x) = {µ} for m− a.e. x ∈ A, as wanted.

�

Proof: (of Theorem 1.6.) Denote SRB to the (a priori maybe empty) set of all

SRB measures, according with Definition 1.1. It is immediate, after Definition 1.2, that

SRB ⊂ O. If O is finite, then all its measures are isolated, and after Lemma 4.1, they

are all SRB measures. Therefore SRB = O is finite. Applying Theorem 1.5 which

states the full attraction property of O, it is obtained that m(A(SRB)) = 1, where

A(SRB) =
⋃
µ ∈ SRB A(µ), being A(µ) the basin of attraction of the SRB measure µ.

Therefore, we conclude that, if O is finite, there exist a finite number of SRB measures

such that the union of their basins cover Lebesgue almost all x ∈M , as wanted. Now,

let us prove the converse statement. Assume that SRB is finite and the union of the

basins of attraction of all the measures in SRB cover Lebesgue almost all x ∈M . After

the minimality property of O stated in Theorem 1.5, O ⊂ SRB. On the other hand,

we have SRB ⊂ O. We deduce that O = SRB, and thus O is finite, as wanted. �

To prove Theorem 1.7 we need the following Lemma (which in fact holds in any

compact metric space P).

Lemma 4.2 If the compact subset O ⊂ P is countably infinite, then the subset S of

its isolated points is not empty, countably infinite and S = O. Therefore, dist(ν,O) =

dist(ν,S) for all ν ∈ P.

Proof: The set O ⊂ P is not empty and compact, after Theorem 1.3. Assume

by contradiction that S is empty. Then O is perfect, i.e. all measure of O is an

accumulation point. The set P of all the Borel probabilities in M is a Polish space,

since it is metric and compact. As nonempty perfect sets in a Polish space always have

the cardinality of the continuum [K95], we deduce that O can not be countably infinite,

contradicting the hypothesis.

Even more, the argument above also shows that if O is countable infinite, then it

does not contain nonempty perfect subsets.

Let us prove now that the subset S of isolated measures of O is countably infinite.

Assume by contradiction that S is finite. Then O \ S is nonempty and compact,

and by construction has not isolated points. Therefore it is a nonempty perfect set,

contradicting the assertion proved above.
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It is left to prove that dist(ν,O) = dist(ν,S) for all ν ∈ P. This assertion, if proved,

implies in particular that dist(µ,S) = 0 for all µ ∈ O, and therefore, recalling that O
is compact, it implies S = O.

To prove that dist(ν,O) = dist(ν,S) for all ν ∈ P, first fix ν and take µ ∈ O
such that dist(ν,O) = dist(ν, µ). Such a probability µ exists because O is compact. If

µ ∈ S, then the equality in the assertion is obtained trivially. If µ ∈ O\S, fix any ε > 0

and denote Bε(µ) to the ball of center µ and radius ε. Take µ′ ∈ S
⋂
Bε(µ). Such µ′

exists because, if not, the nonempty set Bε(µ) ∩O would be perfect, contradicting the

above proved assertion. Therefore, dist(ν,S) ≤ dist(ν, µ′) ≤ dist(ν, µ) + dist(µ, µ′) =

dist(ν,O) + dist(µ, µ′). So, dist(ν,S) < dist(ν,O) + ε. As this inequality holds for all

ε > 0, we conclude that dist(ν,S) ≤ dist(ν,O). The opposite inequality is immediate,

since S ⊂ O. �

Proof: (of Theorem 1.7.) Denote S to the set of isolated measures in O. After

Lemma 4.2, S is countably infinite. Thus, applying Lemma 4.1, µ is SRB for all µ ∈ S.

Then, there exist countably infinitely many SRB measures (those in S and possibly

some others in O \ S). Denote SRB to the set of all SRB measures. After Lemma 4.2

O = S ⊂ SRB ⊂ O. So SRB = O. It is only left to prove that the union of the basins

of attractions A(µi), for all µi ∈ SRB covers Lebesgue almost all M . Denote m to the

Lebesgue measure. Applying Theorem 1.5: pω(x) ⊂ O m−a.e. x ∈M. Together with

Theorem 2.1 and with the hypothesis of countability of O, this last assertion implies

that for m− a.e. x ∈M the set pω(x) has a unique element {µx} ⊂ O. Then:

pω(x) = {µx} ⊂ O m− a.e. x ∈M. (4.1)

We write O = {µi : i = 1, . . . , n}, where µi 6= µj if i 6= j. Denote A =
⋃
i∈NA(µi),

where A(µi) := {x ∈ M : µx = µi}. Assertion (4.1) can be written as m(A) = 1.

In addition, A(µi) ∩ A(µj) = ∅ if µi 6= µj . So 1 =
∑+∞

i=1 m(A(µi)). After Definition

1.1: SRB = {µi ∈ O : m(A(µi)) > 0}. We conclude that
∑
µi∈SRBm(A(µi)) =∑+∞

i=1 m(A(µi)) = 1, as wanted. �

5 Examples

Example 5.1 For any transitive C1+α Anosov diffeomorphism the unique SRB mea-

sure µ is the unique observable measure. But there are also infinitely many other

ergodic and non ergodic invariant probabilities, that are not observable (for instance

those supported on the periodic orbits).

Example 5.2 In [HY95] it is studied the class of diffeomorphisms f in the two-torus

obtained from an Anosov when the unstable eigenvalue of df at a fixed point x0 is

weakened to be 1, maintaining its stable eigenvalue strictly smaller than 1, and the
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uniform hyperbolicity outside a neighborhood of x0. It is proved that f has a single

SRB measure, which is the Dirac delta δx0 supported on x0, and that its basin has total

Lebesgue measure. Therefore, this is the single observable measure for f , it is ergodic

and there are infinitely many other ergodic and non ergodic invariant measures that

are not observable.

Example 5.3 The diffeomorphism f : [0, 1]2 → [0, 1]2; f(x, y) = (x/2, y) has O as the

set of Dirac delta measures δ(0,y) for all y ∈ [0, 1]. In this case O coincides with the set

of all ergodic invariant measures for f . Note that, for instance, the one-dimensional

Lebesgue measure on the interval [0] × [0, 1] is invariant and not observable, and that

there are not SRB-measures as defined in 1.1. This example also shows that the set O
of observable measures is not necessarily closed on convex combinations.

Example 5.4 The maps exhibiting infinitely many simultaneous hyperbolic sinks {xi}i∈N,

constructed from Newhouse’s theorem ([N74]) has a space O of observable measures

which contains δxi for all i ∈ N, which, moreover, are physical measures and isolated in

O. Also the maps exhibiting infinitely many Hénon-like attractors, constructed by Colli

in [C98], has a space of observable measures that contains countably infinitely many

isolated probabilities (the SRB measures supported on the Hénon-like attractors).

Example 5.5 The following example due to Bowen (cited for instance in [Y02]), shows

that, even for a C∞ system, the space of observable measures may be formed by the

limit set of the non convergent sequence (1.1) for Lebesgue almost all initial state. In

fact, consider a diffeomorphism f in a ball of R2 with two hyperbolic saddle points A

and B such that the unstable global manifold W u(A) \ {A} is an embedded arc that

coincides with the stable global manifold W s(B) \ {B}, and conversely, the embedded

arc W u(B) \ {B} = W s(A) \ {A}. Let us take f such that there exists a source C ∈ U
where U is the open ball with boundary W u(A)∪W u(B). One can design f such that

for all x ∈ U the α-limit is {C} and the ω-limit contains {A,B}. If the eigenvalues of

the derivative of f at A and B are adequately chosen, then the empiric sequence (1.1)

for all x ∈ U \ {C} is not convergent, has at least one subsequence convergent to the

Dirac delta δA, and has another subsequence convergent to δB.

After Theorem 2.1, for each x ∈ U \ {C} there are non countably many probability

measures which are the weak∗ limits of the convergent subsequences of (1.1). All these

measures are, then, observable. In addition, as they are invariant under f , due to

Poincaré Recurrence Theorem, all of them are supported on {A} ∪ {B}. So, after

Theorem 2.1, all the convex combinations of δA and δB are observable and conversely.

Therefore, the set O of observable measures for f coincides with the set of convex

combinations of δA and δB and no physical measure exists. This example also shows

that the observable measures are not necessarily ergodic.
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In the Bowen example f described above, the eigenvalues of df at the saddles A

and B, can be adequately designed, also, to achieve that the sequence (1.1), for all

x ∈ U \ {C}, is convergent to a single measure µ = (λ)δA + (1 − λ)δB, with a fixed

constant 0 < λ < 1. So, µ is physical according with definition 1.1, and is the unique

observable measure. This proves that physical measures are not necessarily ergodic,

and moreover, that the set of observable measures does not depend continuously on the

map.

Example 5.6 Consider a partially hyperbolic C1 diffeomorphism f , as defined in Sec-

tion 11.2.3 of [BDV05], where it is proved that f has not SRB-measures, according

to Definition 1.1. Nevertheless, in 11.2.3 of [BDV05], it is proved that f possesses a

probability measure µ that is a Gibbs-u-state, namely, µ has conditional measures µx
respect to an unstable foliation F that are absolute continuous respect to the internal

Lebesgue measures of the leaves Fx. Even more, Theorem 11.16 of [BDV05] states that,

for a Lebesgue-positive set A of initial states x, the sequence (1.1) of empiric probabil-

ities, converges to an ergodic component of µ. Therefore, combining this result with

Theorem 1.5 of this paper, all the ergodic components of µ are observable or SRB-like,

and their closure is the set O for f |A. Applying Lemma 11.13 of [BDV05], all those

observable measures are Gibbs-u-states. Moreover, after Theorems 1.6 and 1.7, and

since in this example there does not exist SRB measures, the set O is non countably

infinite.
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Rio de Janeiro, 2011.
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