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Abstract

For a sequence of subadditive potentials, a method of choosing state points with
negative growth rates for an ergodic dynamical system was given in [5]. This paper first
generalizes this result to the non-ergodic dynamics, and then proves that under some mild
additional hypothesis, one can choose points with negative growth rates from a positive
Lebesgue measure set, even if the system does not preserve any measure that is absolutely
continuous with respect to Lebesgue measure.

Key words and phrases Optimal state points, Subadditive potentials, Observable measures

MSC 2010: 37A30; 37L40

1 Introduction

Let f : M →M be a continuous map on a compact, finite-dimensional manifold M , and m a
normalized Lebesgue measure on M . We denote with M the set of all the Borel probability
measures on M , provided with the weak∗ topology, and with dist∗ a metric inducing this
topology. The termsMf and Ef denote the space of f−invariant Borel probability measures
and the set of f−invariant ergodic Borel probability measures, respectively.

For each point x ∈M , we define the empirical measures

δx,n =
1
n

n−1∑
j=0

δfj(x)

where δx is the Dirac measure at x. We denote with Vf (x) the set of all the Borel probabilities
inM that are the weak∗ limits of the empirical measures. It is well known that Vf (x) ⊂Mf .
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A sequence Φ = {φn}n≥1 of continuous real functions is a subadditive potential on M , if

φn+m(x) ≤ φn(x) + φm(fnx) for all x ∈M, n,m ∈ N.

For µ ∈Mf , it follows, from Kingman’s sub-additive ergodic theorem (see [8] or [16, theorem
10.1]), that

Φ∗(x) := lim
n→∞

1
n
φn(x) for µ− a.e. x ∈M

and
∫

Φ∗(x)dµ = infn≥1
1
n

∫
φndµ. The term Φ∗(x) is called the growth rate of the subadditive

potentials Φ = {φn} at x, defined as the existing limit for a set of full measure for any invariant
measure. All along the paper we will assume that the growth rate is negative, i.e. Φ∗(x) < 0
for µ−almost all x for one or more invariant measures µ. We are interested to select other
state points x ∈M for which the largest growth rate is still negative, namely:

Φ̃∗(x) := lim sup
n→∞

1
n
φn(x) < 0.

The points x ∈M such that Φ̃∗(x) < 0, if exist, are called optimal state points for the given
sequence Φ of subadditive potentials. We will say that the set of optimal state points is
observable, if its Lebesgue measure is positive. We notice that we are neither assuming that
the system preserves the Lebesgue measure, nor any measure that is absolutely continuous
with respect to Lebesgue measure.

The problem of the abundance of optimal state points arises for example when studying
the stability of linear control systems [4]. We are also interested to describe, and to find
Lebesgue positive subsets of state points x ∈ M , that are not necessarily optimal, but for
which the smallest growth rate is negative. Namely:

Φ̂∗(x) := lim inf
n→∞

1
n
φn(x) < 0.

Dai [5] gave a method to choose optimal points. We rewrite his result in our setting as
the following theorem:

Theorem 1.1. ([5]) Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , µ an f−invariant ergodic measure, and Φ = {φn}n≥1 a subadditive potential.
If the growth rates of Φ satisfy

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̃∗(x) < 0 for all x in the basin B(µ) of the measure µ, where B(µ) := {x ∈M : Vf (x) =
{µ}}.

The above theorem states that all the points in the basin of an ergodic measure µ have
negative largest growth rates. A natural question arises with respect to all the other invariant
measures:
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Question 1: How can we ensure the existence of state points x that have negative largest
growth rates, if the measure is f−invariant but not necessarily ergodic?

For an experimenter it would be interesting to know whether the subadditive potentials
have negative largest (or at least smallest) growth rates in a set with positive Lebesgue
measure. To achieve that result and after Dai’s Theorem it would be enough that the basin
B(µ) of the ergodic measure µ has positive Lebesgue measure. But, although B(µ) has full
µ−measure, its Lebesgue measure may be zero, unless µ is physical or SRB. Nevertheless,
general continuous dynamical systems may not have such a physical or SRB measure. Thus,
it arises the following nontrivial question:

Question 2: Under what conditions, even if no physical or SRB measure exists, the
subadditive potentials have negative largest growth rates (or at least negative smallest growth
rates) on a positive Lebesgue measure set?

The following theorem provides a strong result in this direction. It was proved inde-
pendently by Schreiber [10, theorem 1] and Sturman and Stark [13, theorem 1.7], and more
recently Dai [5] gave a proof by a simple method. We rewrite it in our setting, with the
following statement:

Theorem 1.2. ([10, 13]) Let f : M → M be a continuous map on a compact, finite-
dimensional manifold M , and Φ = {φn}n≥1 a subadditive potential. If for each f−invariant
ergodic measure µ the growth rates

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̃∗(x) < 0 for all x ∈M .

Cao [1] also extended the result in the latter theorem to random dynamical systems.
As said above, when observing the system the experimenter may just need to know that

the subadditive potentials have negative growth rates in a positive Lebesgue measure set of
state points x, instead in the whole manifold. That is why we are interested to find the
conditions, weaker than the hypothesis of Theorem 1.2, to ensure that Φ̃∗(x) < 0, or at least
Φ̂∗(x) < 0, just for a Lebesgue-positive set of state points x ∈M .

The questions 1 and 2 above are the motivations and tasks of this paper. To search for
an answer to Question 2 we apply the recent works in [2] and [3]. Motivated and applying
those results, and adapting the arguments of Dai [5], we give positive answers to Questions
1 and 2 in Theorems 2.9, 2.11 and 2.13, and Corollaries 3.1, 3.2 and 3.3 of this paper.

The exposition is organized as follows: Section 2 provides some preliminary definitions
and the statements of our main results in Theorems 2.9, 2.11 and 2.13. Section 3 provides
their detailed proofs and their corollaries. Section 4 gives additional remarks about the main
results, and some examples to illustrate them.
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2 Preliminaries and statements of the new results

This section provides some definitions and the statements of the main results of this paper.
To give a positive answer to question 1, we give the definition of strong basin of ε−attraction

of an invariant measure, as follows:

Definition 2.1. Given a probability measure µ ∈M and a real number ε > 0, the following
set

Sε(µ) := {x ∈M : Vf (x) ⊂ Nε(µ)}

is called strong basin of ε−attraction of µ, where Nε(µ) denotes the ε−neighborhood of µ
under the metric dist∗. Furthermore, if the set Sε(µ) has positive Lebesgue measure for all
ε > 0, then the measure µ is called strong observable for f .

To answer question 2, we first recall the definition of observable measure introduced in
[2].

Definition 2.2. Given a probability measure µ ∈M and a real number ε > 0, the following
set

Aε(µ) := {x ∈M : Vf (x) ∩Nε(µ) 6= ∅}

is called basin of ε−attraction of µ. Furthermore, if the set Aε(µ) has positive Lebesgue
measure for all ε > 0, then the measure µ is called observable for f . Let Of denote the set of
all the observable measures for f .

Remark 2.3. From the definitions above, it is immediate that any strong observable measure
is observable. Nevertheless given an f−invariant measure µ its (strong) basin of ε−attraction
may be empty for all ε > 0. If µ is ergodic then its strong basin of 0−attraction (which is
obviously included in its strong basin of ε−attraction for all positive ε) is not empty since it
includes µ−almost all the points.

It is easy to check that each (strong) observable measure is f−invariant, since it can be
approximated by invariant measures and Mf is weak∗ compact. See [2] for more properties
of observable measures. In order to give a class of systems for which the strong basins
of ε−attraction are not empty for all ε > 0 and for all µ ∈ Mf , we first recall Bowen’s
specification property (see definition 18.3.8 in [7]):

Definition 2.4. A continuous map f : M → M satisfies Bowen’s specification property if
for each ε > 0, there exists an integer m = m(ε) such that for any finite collection {Ij :=
[aj , bj ] ⊂ N : j = 1, 2, ..., k} of finite intervals of natural numbers such that aj+1 − bj ≥ m(ε)
for j = 1, 2, ..., k − 1, for any x1, x2, ..., xk in M , and for any p ≥ bk − a1 +m(ε), there exists
a periodic point x ∈M of period at least p, satisfying

d(f l+aj (x), f l(xj)) < ε for all l = 0, 1, ..., bj − aj and every j = 1, 2, ..., k.
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Proposition 2.5. Let f : M → M be a continuous map on a compact finite-dimensional
manifold M . Assume that f satisfies Bowen’s specification property. Then for all f−invariant
measure µ and for all ε > 0,

Sε(µ) 6= ∅ and Aε(µ) 6= ∅.

Proof. Since Sε(µ) ⊂ Aε(µ), it is enough to prove that Sε(µ) 6= ∅ for all ε > 0. By hypothesis
f satisfies Bowen’s specification property. Then, the set of ergodic measures Ef (precisely
the subset of the invariant measures that are supported on periodic orbits) is dense in the
space of f−invariant measures Mf (see the main theorem in [11] or [12] for a proof). Thus,
for any µ ∈ Mf and any ε > 0, there exists an ergodic measure ν ∈ Nε(µ). The basin B(ν)
is not empty since ν is ergodic and thus Vf (x) = {ν} for ν-a.e. point x ∈ M . Besides, from
ν ∈ Nε(µ) we obtain that B(ν) ⊂ Sε(µ). We deduce that Sε(µ) 6= ∅, ending the proof.

In order to answer question 2, we also need to revisit the definition of observable measures
for a subsystem.

Definition 2.6. Let B ⊂ M be a forward invariant set, i.e. f(B) ⊂ B, that has positive
Lebesgue measure. A probability measure µ is observable for f |B, if for all ε > 0 the following
set

Aε(B,µ) := {x ∈ B : Vf (x) ∩Nε(µ) 6= ∅}

has positive Lebesgue measure. Let Of |B denote the set of all the observable measures for
f |B.

The following definition of Milnor-like attractor was introduced in [3].

Definition 2.7. Let K ⊂M be a nonempty, compact and f−invariant set, i.e. f−1(K) = K.
We say that K is a Milnor-like attractor if the following set

B(K) := {x ∈M : lim inf
n→∞

1
n
]{0 ≤ j ≤ n− 1 : f j(x) ∈ Nε(K)} = 1,∀ε > 0}

has positive Lebesgue measure, where ]A denotes the cardinality of a set A and Nε(K)
denotes the ε−neighborhood of K, i.e., Nε(K) :=

⋃
x∈K B(x, ε) and B(x, ε) is a ball of radius

ε centered at x. The set B(K) is called the basin of K.

Note that the lim inf equal to one in the definition above, implies that the limit exists
and is equal to one.

For each 0 < α ≤ 1, the Milnor-like attractor K is called α−observable if m(B(K)) ≥ α.
An α−observable Milnor-like attractor is minimal, if it has no proper subsets that are also
α−observable Milnor-like attractor for the same value of α.

We restate here, just for completeness, the following result (see [2, 3] for a proof):
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Theorem 2.8. ( [2, 3])Let f : M →M be a continuous map on a compact, finite-dimensional
manifold M , and let B ⊂ M be a forward invariant set that has positive Lebesgue measure.
Then the following properties hold:

(1) The set Of of all observable measures for f is nonempty, and minimally weak∗ com-
pact containing for Lebesgue almost all x ∈ M , all the weak∗ limits of the convergent
subsequences of empirical measures.

(2) For each 0 < α ≤ 1, there exists a minimal α−observable Milnor-like attractor.

(3) The set Of |B is weak∗ compact and nonempty.

(4) The set Of |B is the minimal weak∗ compact set in the space M such that Vf (x) ⊂ Of |B
for Lebesgue almost all x ∈ B.

Now we state the main theorems of this paper. We will give their proofs in the next
section.

The first theorem states that a subadditive potential has negative largest growth rates at
all the state points x belonging to the strong basin of ε−attraction of an invariant measure,
for some ε > 0 (and thus for all ε > 0 small enough).

Theorem 2.9. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , µ an f−invariant measure, and Φ = {φn}n≥1 a subadditive potential. If the
growth rates of Φ satisfy

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M,

then there exists ε > 0 such that Φ̃∗(x) < 0 for each point x in Sε(µ).

Remark 2.10. Combined with Proposition 2.5 (which asserts that Sε(µ) 6= ∅) the theorem
above answers positively Question 1 of the introduction, for any system that satisfies Bowen’s
specification property and for any invariant measure µ.

The second theorem states that the subadditive potentials have negative smallest growth
rates in the basin of ε−attraction of any invariant measure, for some ε > 0.

Theorem 2.11. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , µ an f−invariant measure, and Φ = {φn}n≥1 a subadditive potential. If the
growth rates of Φ satisfies

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then there exists ε > 0 such that Φ̂∗(x) < 0 for each point x in Aε(µ).
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Remark 2.12. From theorem 2.8 we deduce that there always exist observable invariant
measures µ. Applying theorem 2.11 to those measures, we obtain that the smallest growth
rates of the subadditive potential is negative on a set of positive Lebesgue measure, for any
continuous system.

Moreover, the following theorem states that under mild stronger conditions the largest
growth rates are also negative for Lebesgue almost all the points in the basin of any Milnor-like
attractor:

Theorem 2.13. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , and Φ = {φn}n≥1 a subadditive potential. Assume that K is an α−observable
Milnor-like attractor for some 0 < α ≤ 1, and B(K) is its basin. If to each observable
measure µ ∈ Of |B(K)

, the growth rates

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̃∗(x) < 0 for m−almost every x ∈ B(K).

Remark 2.14. Note that the Lebesgue measure of the basin B(K) of the Milnor-like at-
tractor K in the latter theorem is larger than or equal to α. Thus the largest growth rates of
the subadditive potentials is negative on a set with Lebesgue measure that is at least equal
to α. This implies that the optimal state points x (namely the points for which the largest
growth rates are negative) cover a set that is Lebesgue α-observable in the manifold M . This
answers positively Question 2 of the Introduction.

Moreover, if K is a 1−observable Milnor-like attractor (such K always exists after part
(2) of theorem 2.8), then Theorem 2.13 asserts that the largest growth rates of the subadditive
potentials are negative Lebesgue almost everywhere.

To end this section, we state a useful known lemma. It appears in many places; see for
example [1]. We give a proof here just for completeness.

Lemma 2.15. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , and Φ = {φn}n≥1 a subadditive potential. Fix any positive integer l. Then

φn(x) ≤ C +
n−1∑
i=0

1
l
φl(f ix) ∀x ∈M

where C is a constant depending only on l.

Proof. Fix a positive integer l. For each natural number n, we write n = sl + k, where
0 ≤ s, 0 ≤ k < l. Then, for any integer 0 ≤ j < l we have

φn(x) ≤ φj(x) + φl(f jx) + · · ·+ φl(f (s−2)lf jx) + φk+l−j(f (s−1)lf jx),
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where φ0(x) ≡ 0. Let C1 = maxj=1,···2l ||φj ||∞. Adding φn(x) when j takes all the natural
values from 0 to l − 1, we have

lφn(x) ≤ 2lC1 +
(s−1)l−1∑
i=0

φl(f ix).

Hence

φn(x) ≤ 2C1 +
(s−1)l−1∑
i=0

1
l
φl(f ix) ≤ 4C1 +

n−1∑
i=0

1
l
φl(f ix).

Choosing C = 4C1 the desired result follows.

3 Proofs of the main results

This section provides the proofs of the theorems in section 2.

3.1 Proof of theorem 2.9

Proof. Let µ be an f−invariant measure that satisfies the hypothesis of theorem 2.9. The
arguments here are similar to those of Dai in [5]. Let ψn(x) = max{−n, φn(x)} for all n ≥ 1
and each x ∈ M . It is easy to see that the sequence of functions Ψ = {ψn} is subadditive.
Set

Ψ̃∗(x) := lim sup
n→∞

1
n
ψn(x) ∀x ∈M.

Under the hypothesis of theorem 2.9, it follows that Ψ̃∗(x) < 0 for µ−almost every x ∈ M .
Since ψn(x) ≥ φn(x) for all n ≥ 1 and all x ∈ M , to prove theorem 2.9 it is enough to show
that Ψ̃∗(x) < 0 for all x ∈ Sε(µ) for some ε > 0.

Using the definition of Ψ and the subadditivity of Ψ, we have

−1 ≤ 1
n
ψn(x) ≤ ||ψ1||∞ ∀x ∈M.

It follows from the Fatou lemma that

inf
n≥1

1
n

∫
ψndµ = lim

n→∞

1
n

∫
ψndµ ≤

∫
lim sup
n→∞

1
n
ψn(x)dµ =

∫
Ψ̃∗(x)dµ < 0.

Therefore, there exists an integer l ≥ 1 such that

−1 ≤ 1
l

∫
ψldµ < 0.

For some sufficiently small η > 0, say η < | 1
l

∫
ψldµ|
2 , fix a positive number ε > 0 such that

dist∗(µ, ν) ≤ ε⇒ |
∫

1
l
ψldµ−

∫
1
l
ψldν| < η.
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If the strong basin of ε-attraction of µ is empty, i.e., Sε(µ) = ∅, then there is nothing to prove.
Otherwise, let

D = {x ∈ Sε(µ) : lim sup
n→∞

1
n
ψn(x) ≥ 0}.

We will prove that D = ∅. Assume by contradiction that there exists x0 ∈ D. Since
x0 ∈ D ⊂ Sε(µ), choose a subsequence of integers {ni} such that δx0,ni converges weakly to
a measure µ̃ and limi→∞

1
ni
ψni(x0) = lim supn→∞

1
nψn(x0). Note that µ̃ ∈ Vf (x0) ⊂ Nε(µ),

i.e., dist∗(µ, µ̃) ≤ ε. . It follows that

0 >
∫

1
l
ψldµ+ η >

∫
1
l
ψldµ̃ = lim

i→∞

∫
1
l
ψldδx0,ni = lim

i→∞

1
ni

ni−1∑
j=0

1
l
ψl(f jx0).

Using lemma 2.15, we have

lim
i→∞

1
n i
ψni(x0) ≤ lim

i→∞

1
n i

ni−1∑
j=0

1
l
ψl(f jx0).

Note that x0 ∈ D, we have

0 > lim
i→∞

1
n i

ni−1∑
j=0

1
l
ψl(f jx0) ≥ lim

i→∞

1
n i
ψni(x0) ≥ 0

which is a contradiction. This completes the proof of theorem 2.9.

Corollary 3.1. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , and Φ = {φn}n≥1 a subadditive potential. Assume that there exists a strong
observable measure µ. If the growth rates of Φ satisfies

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̃∗(x) < 0 on a set with positive Lebesgue measure.

Proof. First note that µ is also f−invariant, thus there exists ε > 0 such that Φ̃∗(x) < 0 on
the set Sε(µ), i.e., the strong basin of ε−attraction of µ. And since µ is strong observable,
we have m(Sε(µ)) > 0. This completes the proof of the corollary.

3.2 Proof of theorem 2.11

Proof. Let µ be an f−invariant measure that satisfies the hypothesis of theorem 2.11. Let
ψn(x) = max{−n, φn(x)} for all n ≥ 1 and each x ∈ M . As in the previous proof, the
sequence Ψ = {ψn} is subadditive. Set

Ψ̂∗(x) := lim inf
n→∞

1
n
ψn(x) ∀x ∈M.
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Under the hypothesis of theorem 2.11, it follows that Ψ̂∗(x) < 0 for µ−almost all x. Since
ψn(x) ≥ φn(x) for all n ≥ 1 and all x ∈ M , to prove theorem 2.11 it is enough to show that
Ψ̂∗(x) < 0 for each point in Aε(µ) for some ε > 0.

Using the definition of Ψ and the subadditivity of Ψ, we have

−1 ≤ 1
n
ψn(x) ≤ ||ψ1||∞ ∀x ∈M.

It follows from the Fatou lemma that

inf
n≥1

1
n

∫
ψndµ = lim

n→∞

1
n

∫
ψndµ ≤

∫
lim sup
n→∞

1
n
ψn(x)dµ < 0.

The last inequality holds since lim sup
n→∞

1
nψn(x) < 0 for µ−almost all x ∈M . Therefore, there

exists an integer l ≥ 1 such that

−1 ≤ 1
l

∫
ψldµ < 0.

For some sufficiently small η > 0, say η < | 1
l

∫
ψldµ|
2 , fix a positive number ε > 0 such that

dist∗(µ, ν) ≤ ε⇒ |
∫

1
l
ψldµ−

∫
1
l
ψldν| < η.

If the basin of ε-attraction of µ is empty, i.e., Aε(µ) = ∅, then there is nothing to prove.
Otherwise, let

D = {x ∈ Aε(µ) : lim inf
n→∞

1
n
ψn(x) ≥ 0}.

We will prove that D = ∅. Assume by contradiction that there exists x0 ∈ D. Since
x0 ∈ D ⊂ Aε(µ), there exists µ̃ ∈ Vf (x0) such that dist∗(µ, µ̃) ≤ ε. Choose a subsequence of
integers {ni} such that δx0,ni converges weakly to the measure µ̃. It follows that

0 >
∫

1
l
ψldµ+ η >

∫
1
l
ψldµ̃ = lim

i→∞

∫
1
l
ψldδx0,ni = lim

i→∞

1
n i

ni−1∑
j=0

1
l
ψl(f jx0).

Using lemma 2.15, we have

lim inf
i→∞

1
n i
ψni(x0) ≤ lim

i→∞

1
n i

ni−1∑
j=0

1
l
ψl(f jx0).

Note that x0 ∈ D, we have

0 > lim
i→∞

1
n i

ni−1∑
j=0

1
l
ψl(f jx0) ≥ lim inf

i→∞

1
n i
ψni(x0) ≥ lim inf

n→∞

1
n
ψn(x0) ≥ 0

which is a contradiction. This completes the proof of theorem 2.11.
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Corollary 3.2. Let f : M →M be a continuous map on a compact, finite-dimensional man-
ifold M , and Φ = {φn}n≥1 a subadditive potential. Let µ be any (always existing) observable
measure for f . If the growth rates of Φ satisfy

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̂∗(x) < 0 on a set with positive Lebesgue measure.

Proof. First note that µ is also f−invariant, thus there exists ε > 0 such that Φ̂∗(x) < 0
on the set Aε(µ), i.e., the basin of ε−attraction of µ. And since µ is observable, we have
m(Aε(µ)) > 0. This completes the proof of the corollary.

3.3 Proof of theorem 2.13

Proof. As in the proof of theorem 2.11, define ψn(x) = max{−n, φn(x)} for all n ≥ 1 and
each x ∈ M . Then the sequence of functions Ψ = {ψn} is a family of continuous functions
which is subadditive. Set

Ψ̃∗(x) := lim sup
n→∞

1
n
ψn(x) ∀x ∈M.

Under the hypothesis of theorem 2.13, to each observable measure µ ∈ Of |B , it holds that
Ψ̃∗(x) < 0 for µ−almost every x ∈M . By the definition of Ψ, it is easy to see that Ψ̃∗(x) ≥
Φ̃∗(x) for each x ∈ M . So, to prove theorem 2.13 it is enough to show that Ψ̃∗(x) < 0 for
m−almost every x ∈ B(K), where m denotes the Lebesgue measure.

Since the Milnor-attractor K is α−observable, its basin B(K) satisfies m(B(K)) ≥ α.
It is easy to check that the basin B(K) is forward invariant. Thus, each of the observable
measures in the set O |f |B(K)

satisfies Theorem 2.8.
Let D = {x ∈ B(K) : lim sup

n→∞
1
nψn(x) ≥ 0}. To end the proof of Theorem 2.13 it is now

enough to show that m(D) = 0.
Assume by contradiction that m(D) > 0. By the fourth item of theorem 2.8, we can

choose a point x0 ∈ D such that Vf (x0) ⊂ Of |B(K)
. We can take a subsequence of integers

{ni} such that δx0,ni converges weakly to the measure µ ∈ Vf (x0) and limi→∞
1
ni
ψni(x0) =

lim supn→∞
1
nψn(x0). As

−1 ≤ 1
n
ψn(x) ≤ ||ψ1||∞ ∀x ∈M,

it follows from the Fatou lemma that

inf
n≥1

1
n

∫
ψndµ = lim

n→∞

1
n

∫
ψndµ ≤

∫
lim sup
n→∞

1
n
ψn(x)dµ < 0

since µ ∈ Of |B(K)
, and by the definition of Ψ and the hypothesis of theorem 2.13, we obtain

that
lim sup
n→∞

1
n
ψn(x) < 0
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for µ−almost every point x ∈M . So, there exists an integer l ≥ 1 such that −1 ≤ 1
l

∫
ψldµ <

0, and further

0 >
1
l

∫
ψldµ = lim

i→∞

∫
1
l
ψldδx0,ni = lim

i→∞

1
ni

ni−1∑
j=0

1
l
ψl(f jx0).

Using lemma 2.15, we have

lim
i→∞

1
ni
ψni(x0) ≤ lim

i→∞

1
ni

ni−1∑
j=0

1
l
ψl(f jx0).

Note that x0 ∈ D, we have

0 > lim
i→∞

1
ni

ni−1∑
j=0

1
l
ψl(f jx0) ≥ lim

i→∞

1
ni
ψni(x0) ≥ 0

which is a contradiction. This completes the proof of theorem 2.13.

Using the first item of theorem 2.8 and the same arguments as in the proof of theorem
2.13, we have the following corollary.

Corollary 3.3. Let f : M → M be a continuous map on a compact, finite-dimensional
manifold M , and Φ = {φn}n≥1 a subadditive potential. If for all observable measure µ ∈ Of ,
the growth rates

Φ∗(x) := lim
n→∞

1
n
φn(x) < 0 µ− a.e. x ∈M

then Φ̃∗(x) < 0 for Lebesgue almost all x ∈M .

4 Examples and additional remarks

In [2] it is proved that observable measures exist for all continuous systems. Nevertheless,
the following example (attributed to Bowen [6, 15] and early cited in [14]) shows that not all
continuous dynamical systems (indeed not all C2 systems) have strong observable measures.
So, in this example Corollary 3.1 can not be applied. Nevertheless we will prove that it still
satisfies the final assertion of that Corollary, since for Lebesgue almost all x ∈M , the growth
rate Φ̃∗(x) < 0.

Example 4.1. Consider a C2 diffeomorphism f in a compact ball M of R2 with two hy-
perbolic saddle points A and B in the boundary ∂M of M such that (half) the unstable
global manifold W u(A) \ {A} is an embedded C2 arc that coincides with (half) the sta-
ble global manifold W s(B) \ {B}, conversely W s(A) \ {A} = W u(B) \ {B}, and besides
∂M = W u(A) ∪ W u(B). Take f such that there exists a source C ∈ U where U is the
topological open ball with boundary W u(A) ∪W u(B). One can choose f such that for all
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x ∈ U the α−limit is {C} and the ω−limit contains {A,B}. See figure 1 in [15]. If the
eigenvalues of the derivative of f at A and B are adequately chosen as specified in [6, 15],
then the sequence of empirical measures for any x ∈ U \ {C} is not convergent. It has at
least two subsequences convergent to different convex combinations of the Dirac measures δA
and δB. The systems, as proved in [6], satisfies the following property:

There exists a segment Γ in the space of f−invariant measures, such that Γ is a family
of convex combinations of the two Dirac measures δA and δB, and Vf (x) = Γ for Lebesgue
almost all points x.

Therefore, as a corollary of the result above, we obtain:

Proposition 4.2. In the example 4.1:

(A) For Lebesgue almost all points, the sequence of empirical measures does not converge.

(B) All measures in Γ are observable according to definition 2.2 and are the only observable
measures,

(C) There does not exist strong observable measures according to definition 2.1.

Proof. (A) is immediate from the fact that Vf (x) = Γ for Lebesgue almost all points x.
We refer the proof of (B) to the example 5.5 in [2]. Finally, let us prove (C). Since for all
x ∈ U \ {C} the sequence of empirical measures has at least two subsequences convergent to
different convex combinations of the Dirac measures δA and δB, no invariant measure satisfies
Definition 2.1 of strong observability. In other words, there does not exist strong observable
measures, because for any invariant measure the strong basin of ε−attraction is empty.

Remark 4.3. The proposition above shows that there exist dynamical systems for which
Theorem 2.9 and Corollary 3.1 do not give information about the existence of optimal state
points for the subadditive potentials. Nevertheless, if Φ∗(x) < 0 for µ-a.e. just for one (not
necessarily ergodic) invariant measure µ, and if µ is some of the always existing observable
measures, then for those systems Theorem 2.11 and Corollary 3.2 still ensure the existence
of a Lebesgue positive set of state points with negative smallest growth rates.

Moreover, in Example 4.1 we still have the following very strong statement:

Proposition 4.4. Let f be the Bowen’s example defined in Example 4.1, µ an observable
measure for f , and Φ a subadditive potential with the growth rate Φ∗(x) < 0 for µ-a.e. x.
Then, the largest growth rate Φ̃∗(x) is negative for Lebesgue almost all x ∈M .

Proof. Any observable measure in this example, i.e. any µ ∈ Γ, has exactly two ergodic
components, that are δA and δB, and has basin of ε−attraction Aε(µ) that covers Lebesgue
almost all M . Since Φ∗(x) < 0 for µ-a.e. x, Φ∗(A) < 0 and Φ∗(B) < 0, because µ is
supported on {A,B}. Therefore Φ∗(x) < 0 ν-a.e. for all other observable measure ν, because
ν is a convex combination of δA and δB. After Corollary 3.3, the largest growth rate Φ̃∗(x)
is negative for Lebesgue almost all x ∈M .
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Remark 4.5. The proof above shows how Theorem 2.13 and its Corollary 3.3 are powerful
results, particularly useful if neither physical nor strong observable measure exists. In fact,
even if the set of the observable measures components is uncountable (as in Example 4.1),
the set of all their ergodic components may be finite and still the conclusion that Lebesgue
almost all points are optimal states for a given subadditive potential, may hold. We recall
from Definition 2.1 that if no strong observable measure exists, then no physical measure
exists. And if no physical measure exists, then the (never empty) set of observable measures
is necessarily uncountable (for a proof see [2]).

Example 4.6. In theorem 3.4 of [9] Misiurewicz proved that there exists a C0 topologically
expanding map f in the circle S1 such that for Lebesgue almost all x ∈ S1 the limit set Vf (x)
of the sequence of empirical measures is composed by all the (uncountably infinitely many)
f−invariant measures. Thus, Vf (x) = Of =Mf for Lebesgue almost all x ∈ S1. Then, it is
easy to check that there is no strong observable measure in this example.

Proposition 4.7. For the example 4.6 of Misiurewicz, there exist two observable ergodic
invariant measures µ and ν, and a subadditive potential Φ = {φn}n, such that the following
properties hold:

(i) Φ∗(x) := limn→∞
1
nφn(x) < 0 for µ−a.e. x.

(ii) The smallest growth rates Φ̂∗(x) < 0 for all x ∈ Aε(µ) for all ε > 0 small enough.

(iii) The largest growth rates Φ̃∗(x) > 0 for all x ∈ Aε(ν) for all ε > 0 small enough.

Proof. The map f of Misiurewicz has a dense set of periodic orbits (see Theorem 3.4 of [9]).
Choose two of those periodic orbits, say O1 and O2 and a real continuous function g : S1 → R
such that g(x) = −1 for all x ∈ O1 and g(x) = 1 for all x ∈ O2.

Define φn(x) =
∑n−1

i=0 g(f ix). Note that Φ = {φn}n≥1 is an additive potential, since
φn+m = φn + φm(fn) for all natural numbers n and m. Therefore {φn}n and {−φn}n are
also subadditive potentials.

The measure µ supported on O1 and equally distributed in all the points of O1 is ergodic.
And besides it is observable because all invariant measures are observable for f . Furthermore,
by construction 1

nφn(x) = −1 for all x ∈ O1, so Φ∗(x) = −1 < 0 for µ−a.e. x, proving (i).
Therefore, applying theorem 2.11, the assertion (ii) follows for some ε > 0, and after the
definition of basin Aε(µ) of ε- attraction, the assertion (ii) is proved for all ε > 0 small
enough.

Now it is left to prove (iii). Consider the measure ν supported on O2 and equally dis-
tributed in all the points of O2. Similar arguments to those used with µ lead to the conclu-
sion that ν is observable ergodic and Φ∗(x) = +1 for all x ∈ O2. Besides, for all x ∈ O2,
−Φ∗(x) = Ψ∗(x), where Ψ := {−φn}n≥1. Therefore, Ψ∗(x) = −1 for ν-a.e. point. Applying
again theorem 2.11 we obtain that Ψ̂∗(x) < 0 for all x ∈ Aε(ν), for all ε > 0 small enough.
Since Ψ̂∗(x) = −Φ̃∗(x), we conclude that Φ̃∗(x) > 0 for all x ∈ Aε(ν) for all ε > 0 small
enough. This completes the proof of (iii).



Prepublicaciones de Matemática PREMAT 2012/137 http://premat.fing.edu.uy/ 15

Corollary 4.8. In the example 4.6 of Misiurewicz, if Φ is the subadditive potentials of Propo-
sition 4.7, then Φ∗(x) < 0 for µ-a.e., but for Lebesgue almost all points x ∈ S1:

Φ̂∗(x) < 0, Φ̃∗(x) > 0.

Proof. Since Vf (x) =Mf for Lebesgue almost all point x ∈ S1, Vf (x) intersects Aε(µ) for all
ε > 0 for Lebesgue almost all x and for all µ ∈ Mf . This implies that for all positive ε and
for all pair of invariant measures µ and ν, Aε(µ) = Aε(ν) = S1 up to sets of zero Lebesgue
measures. Hence, the assertion (ii) of Proposition 4.7 implies that Φ̂∗(x) < 0 for Lebesgue
almost all x ∈ S1. Analogously the assertion (iii) implies that Φ̃∗(x) > 0 for Lebesgue almost
all x ∈ S1.

Remark 4.9. After the Corollary above, the example 4.6 of Misiurewicz shows that the
assertion Φ∗(x) < 0 for µ a.e., assumed in the hypothesis of Theorem 2.11 and Corollary 3.2
can be satisfied, but the conclusions of those two results stating that the smallest growth rate
is negative, can not be improved, since the largest growth rates may be positive, as in this
concrete example, for Lebesgue almost all x in the manifold.

Therefore, the last example shows that the conclusion of Theorem 2.11 can not be
strengthened in general. In this sense Theorem 2.11 and Corollary 3.2 are optimally stated
if one wishes them to hold for all the continuous systems.
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