Formulario de aprobación de curso de posgrado/educación permanente

Asignatura: Vibraciones en turbinas hidráulicas inducidas por fluj	0	
Modalidad: (posgrado, educación permanente o ambas)	Posgrado Educación permanente	X
Profesor de la asignatura ¹: Dr. Ing. Eduard Eg Catalunya, España (título, nombre, grado, instituto)	gusquiza, Profesor Emérito, Univer	rsitàt Polytecnica de
Profesor Responsable Local ¹: Dr. Ing. Rodolf MSc. Ing. Bruno López, Grado 2 (DT), IMFIA (título, nombre, grado, instituto)	o Pienika, Grado 3 (DT), IMFIA	
Otros docentes de la Facultad: (título, nombre, grado, instituto)		
Docentes fuera de Facultad: Dr. Ing. Eduard E Catalunya, España (título, nombre, cargo, institución, país)	gusquiza, Profesor Emérito, Unive	ersitàt Polytecnica de
Programa(s) de posgrado:		
Instituto o unidad: Instituto de Mecánica de lo	s Fluidos e Ingeniería Ambiental	
Departamento o área: Mecánica de los Fluidos	;	
Horas Presenciales: 6 (se deberán discriminar las horas en el ítem Metodol	ogía de enseñanza)	
Nº de Créditos: [Exclusivamente para curso de posgrado] (de acuerdo a la definición de la UdelaR, un crédidetalla en el ítem Metodología de enseñanza)	to equivale a 15 horas de dedicación	n del estudiante según se
Público objetivo: Dirigido a estudiantes de pos Ingeniería de la Energía e Ingeniería Mecánica hidroeléctrica		
Cupos: (si corresponde, se indicará el número de plazas, adjuntará en nota aparte los fundamentos de los cu máximo, el criterio general será el orden de inscripcio	upos propuestos. Si no existe indicac	ión particular para el cupo
Objetivos: Brindar conocimientos sobre vibraci descripción del fenómeno, técnicas de monitore		idas por flujo:

Conocimientos previos exigidos: No se requiere

Conocimientos previos recomendados: Conocimientos básicos de mecánica de los fluidos, de

turbinas hidráulicas y de vibraciones

Metodología de enseñanza:

Descripción de la metodología:

El curso se desarrollará en forma híbrida, pudiendo los estudiantes elegir entre asistir presencialmente o participar a distancia a través de la plataforma virtual. Las clases presenciales serán en la Facultad de Ingeniería. El dictado del curso se repartirá en 4 módulos de 1,5 horas cada uno, distribuidos en 2 días. Durante el desarrollo del curso se utilizará la técnica expositiva para presentar los temas de estudio, apoyándose en todo momento con ejemplos de casos reales.

Detalle de horas:

- Horas de clase (teórico): 6
- Horas de clase (práctico): 0
- Horas de clase (laboratorio): 0
- Horas de consulta: 0
- Horas de evaluación: 0
 - Subtotal de horas presenciales: 6
- Horas de estudio: 0
- Horas de resolución de ejercicios/prácticos: 0
- Horas proyecto final/monografía: 0
 - Total de horas de dedicación del estudiante: 6

Forma de evaluación:

No tiene

Temario:

1. Fenómenos no estacionarios en Francis y Kaplan

Tipos de excitaciones hidráulicas Interacción rotor-estator Antorcha de carga parcial y de sobrecarga Vórtices entre álabes y desprendimiento Cavitación

2. Vibraciones en Francis y Kaplan

Vibraciones inducidas por flujo Influencia del punto de operación Respuesta sistema hidráulico y estructural Ejemplos

3. Daños en turbinas

Evolución del desgaste Principales tipos de daño en Francis y Kaplan Origen y síntoma de los daños Optimización indicadores de condición. Diagnóstico Aplicación al monitoreo Ejemplos

4. Monitoreo

Esquema general
Sensores y posición
Adquisición de datos y procesamiento
Parámetros básicos
Mapeo. Diagnóstico
Indicadores de condición (índices de salud)
Aplicación general de la IA

Bibliografía:

(título del libro-nombre del autor-editorial-ISBN-fecha de edición)

Flow-induced Pulsation and Vibrations in Hydroelectric Machinery. Dörfler, Sick y Coutu, Springer. ISBN 978-1-4471-4252-2. 2013.

Vibrations of Hydraulic Machinery. Wu, Li, Liu, Dou y Qian. Springer. ISBN 978-94-007-6421-7. 2013

Dynamic Analysis of Francis Runners – Experiment and Numerical Simulation. Lais S., Liang Q., Henggeler U., Weiss T., Escaler X. Y Egusquiza E.. Int. Journal of Fluid Machinery and Systems. Vol. 2, No 4, 2009.

Failures due to ingested bodies in hydraulic turbines. Egusquiza E., Valero C., Estévez A., Guardo A. y Coussirat M.. Engineering Failure Analysis, Vol. 18, 2011. http://dx.doi.org/10.1016/j.engfailanal.2010.09.039

Power Swing Generated in Francis Turbines by Part Load an Overload Instabilities. Valentín D., Presas A., Egudquiza E., Valero C., Egusquiza M. y Bossio M.. Energies, Vol. 10, 2017. http://dx.doi.org/10.3390/en10122124

Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines. Valentin D., Presas A., Egusquiza M., Valero C. y Egusquiza E.. Applied Sciences MDPI. http://www.mdpi.com/journal/applsci. 2018.

Detection of Hydraulic Phenomena In Francis Turbines with Different Sensors. Valentín D., Presas A., Valero C., Egusquiza M. y Egusquiza E.. Sensors, Vol. 19, 2019. doi:10.3390/s19184053

Failure investigation of a Kaplan turbine blade. Zhang M., Valentín D., Valero C., Egusquiza M. y Egusquiza E.. Engineering Failure Analysis, Vol. 97, 2019. https://doi.org/10.1016/j.engfailanal.2019.01.056

On the use of Vibrational Hill Charts for improved condition monitoring and diagnosis of hydraulic turbines. Zhao W., Presas A., Egusquiza M., Valentín D., Egusquiza E. y Valero C.. Structural Health Monitoring, Vol. 0, 2022. https://doi.org/10.1177/14759217211072409

Procedure to minimize rotor vibrations from flow-induced excitations in Kaplan turbines. Jonsson P., Nässelqvist M., Mulu B. y Högström C.. IOP Conf. Series: Earth and Environment Science, 1079 (2022) doi:10.1088/1755-1315/1079/1/012098

Experimental study on the detection of vibrations of an operating turbine runner with sensors on the casing. Egusquiza M., Tessier A., Presas A., Valentín D., St-Amant Y. y Houde S.. Measurement Elsevier. https://doi.org/10.1016/j.measurement.2025.116773. 2025

Datos del curso

Fecha de inicio y finalización: 27/10/2025 al 28/10/2025

Horario y Salón: lunes 27/10 y martes 28/10 de 16:00 a 19:15 Salón de posgrado del IMFIA

Arancel:

[Si la modalidad no corresponde indique "no corresponde". Si el curso contempla otorgar becas, indíquelo]

Arancel para estudiantes inscriptos en la modalidad posgrado: no corresponde Arancel para estudiantes inscriptos en la modalidad educación permanente: USD 100 (se otorgan becas)